\(TH1\left(x-\dfrac{3}{5}\right)^2=2^2\\ x-\dfrac{3}{5}=2\\ x=2+\dfrac{3}{5}\\ x=\dfrac{13}{5}\\ TH2\left(x-\dfrac{3}{5}\right)^2=\left(-2\right)^2\\ x-\dfrac{3}{5}=-2\\ x=-\dfrac{7}{5}\)
\(\left(x-\dfrac{3}{5}\right)^2=4\)
\(\Leftrightarrow\left|x-\dfrac{3}{5}\right|=2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{5}=2\\x-\dfrac{3}{5}=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13}{5}\\x=-\dfrac{7}{5}\end{matrix}\right.\)
`[27]`
`<=>` \(\left[{}\begin{matrix}x-\dfrac{3}{5}=2\\x-\dfrac{3}{5}=-2\end{matrix}\right.\)
`<=>` \(\left[{}\begin{matrix}x=\dfrac{13}{5}\\x=-\dfrac{7}{5}\end{matrix}\right.\)
\(\left(x-\dfrac{3}{5}\right)^2=4\)
\(\left(x-\dfrac{3}{5}\right)^2=2^{2^{ }}\)
\(\Rightarrow x-\dfrac{3}{5}=\pm2\Rightarrow\left[{}\begin{matrix}x-\dfrac{3}{5}=2\\x-\dfrac{3}{5}=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{13}{5}\\x=\dfrac{-7}{5}\end{matrix}\right.\)