Dưới lớp 10 ko có cách nào để giải dạng này (hoặc nếu sử dụng chia trường hợp để giải thì sẽ mất vài trang giấy, không ai làm thế hết)
Dưới lớp 10 ko có cách nào để giải dạng này (hoặc nếu sử dụng chia trường hợp để giải thì sẽ mất vài trang giấy, không ai làm thế hết)
\(\left|A\right|=\left[{}\begin{matrix}A\left(A\ge0\right)\\-A\left(A< 0\right)\end{matrix}\right.\) đúng không nhỉ các bạn . Còn nếu biết a là 1 số rõ ràng ví dụ như -3 , -4 hoặc số chưa rõ như x-3 thì phải xét 2 TH ạ!
\(\left|A\right|=\left\{{}\begin{matrix}A\left(A\ge0\right)\\-A\left(A< 0\right)\end{matrix}\right.\) đúng không nhỉ các bạn . Còn nếu biết a là 1 số rõ ràng ví dụ như -3 , -4 hoặc số chưa rõ như x-3 thì phải xét 2 TH ạ!
Câu 1:
Cho hai biểu thức: \(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)\) và \(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)\) với \(x\ge0,x\ne1.\)
a) Tính giá trị của biểu thức B khi x = 4;
b) Rút gọn biểu thức M = A.B;
c) Tìm x để \(M=\dfrac{\sqrt{x}}{6}.\)
Câu 2:
Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:
Hai lớp 9A; 9B của một trường Trung học cơ sở có 90 học sinh. Trong đợt quyên góp sách vở ủng hộ học sinh vùng lũ lụt, mỗi bạn lớp 9A ủng hộ 3 quyển, mỗi bạn lớp 9B ủng hộ 2 quyển. Tính số học sinh của mỗi lớp biết rằng cả hai lớp ủng hộ được 222 quyển sách và vở.
Câu 3:
1. Giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{3}{y}=4\\\dfrac{5}{x}-\dfrac{2}{y}=3\end{matrix}\right.\)
2. Cho phương trình \(x^4-\left(m+2\right)x^2+m+1=0\) (1)
a) Giải phương trình (1) khi m = 2;
b) Tìm m để phương trình (1) có 4 nghiệm phân biệt.
Câu 4:
Cho đường tròn (O;R). Điểm M ở ngoài đường tròn sao cho OM = 2R. Kẻ hai tiếp tuyến MA, MB với đường tròn (A; B là các tiếp điểm). Nối OM cắt AB tại H. Hak HD ⊥ MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F.
a) Chứng minh MAOB là tứ giác nội tiếp;
b) Chứng minh OH.OM = OA2;
c) Đường tròn đường kính MB cắt BD tại I, gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng.
Câu 5:
Tính diện tích xung quanh của hình nón có đường sinh bằng 10cm, đường kính đáy bằng 8cm.
Chúc các em ôn thi tốt!
Giải các phương trình:
a) \(\left(x^2+2x+5\right)\left(x^2+4x\right)=0\)
b) \(\left(x^2-4x+4\right)\left(x^2-3x\right)=0\)
c) \(1,2x^3-x^2-0,2x=0\)
Dùng bđt cosi để giải hệ phương trình :\(\left\{{}\begin{matrix}x,y,z\ge0\\x^3=y^2+z+2\\\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=9\end{matrix}\right.\)
Cho tam thức bậc hai \(f\left(x\right)=x^2+bx+c\). Giả sử phương trình \(f\left(x\right)=x\) có \(2\) nghiệm phân biệt. Chứng minh rằng nếu \(\left(b+1\right)^2>4\left(b+c+1\right)\) thì phương trình \(f\left(f\left(x\right)\right)=x\) có \(4\) nghiệm phân biệt.
Giải bất phương trình
a) \(\left(x-2\right)\left(x+8\right)>x\left(x+2\right)\)
b) \(2\left(x-1\right)-12< 0\)
B4:Giải hệ pt:
a)\(\left\{{}\begin{matrix}4x+2y=14\\2x-2y=4\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2x-4y=0\\3x+2y=8\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)
giải hpt: \(\left\{{}\begin{matrix}\left(2x-1\right)^2+4\left(y-1\right)^2=10\\xy\left(x-1\right)\left(y-2\right)=-\dfrac{3}{2}\end{matrix}\right.\)