\(M=\left(a+b\right)\left(a^2+b^2-ab\right)=a^2+b^2-ab=\left(a+b\right)^2-3ab=1-3ab\)
Ta có: \(\left(a-b\right)^2\ge0\) với mọi a;b
\(\Rightarrow a^2+b^2+2ab\ge4ab\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow3ab\le\frac{3}{4}\left(a+b\right)^2\Rightarrow-3ab\ge-\frac{3}{4}\left(a+b\right)^2=-\frac{3}{4}\)
\(\Rightarrow M\ge1-\frac{3}{4}=\frac{1}{4}\)
\(M_{min}=\frac{1}{4}\) khi \(a=b=\frac{1}{2}\)