Đường thẳng d có 1 vtcp là (1;-3) nên nhận (3;1) là 1 vtpt
Phương trình d:
\(3\left(x+2\right)+1\left(y-3\right)=0\Leftrightarrow3x+y+3=0\)
Đường thẳng d có 1 vtcp là (1;-3) nên nhận (3;1) là 1 vtpt
Phương trình d:
\(3\left(x+2\right)+1\left(y-3\right)=0\Leftrightarrow3x+y+3=0\)
trong mặt phẳng Oxy cho 3 điểm A(1; 3), B(-1;4) và C(-3; 0) a)viết phương trình tham số đường thẳng BC b) viết phương trình đường tròn có tâm A và đi qua điểm B c) tìm tọa độ chân đường cao AH của tam giác ABC.
Trong Oxy, cho A(2;0) và đường thẳng d có phương trình x - y + 2 = 0. Gọi M(x;y) là điểm trên đường thẳng d sao cho chu vi tam giác OAM nhỏ nhất. Khi đó x + y bằng bao nhiêu?
Trong mặt phẳng Oxy cho tam giác ABC có C(4,-1) trung điểm của đoạn AB là M (3,2) đường cao AH của tam giác ABC có phương trình x+3y-7=0 viết phương trình chứa cạnh AC
Cho hàm số y = x^2 + 3x có đồ thị (P). Gọi S là tập hợp các giá trị của tham số m để đường thẳng d : y = x + m^2 cắt đồ thị (P) tại hai điểm phân biệt A,B sao cho trung điểm I của đoạn AB nằm trên đường thẳng d': y= 2x+3. Tổng bình phương các phần tử của S là
Cho (P): y=\(x^2-2x+3\).
a) Khảo sát và vẽ đồ thị hàm số trên.
b) Dựa vào đồ thị,biện luận số nghiệm của phương trình: \(x^2-2x-m=0\).
c)Viết phương trình đường thẳng d vuông góc với đường thẳng \(\Delta:y=2x+1\)và đi qua đỉnh của (P).
trong hệ trục tọa độ Oxy, cho 2 điểm A(0, 1) và B(3, 4). Điểm M (a, b) thuộc đường thẳng (d) x-2y-2=0 thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) đạt giá trị nhỏ nhất, Khi đó a+b bằng
Đường thẳng đi qua điểm A(1;2) và song song với đường thẳng y=-2x+3 có phương trình là gì
trong mặt phẳng với hệ tọa độ Oxy, cho đường trong (C) \(x^2+y^2-4x+6y-12=0\) và D(1,1). Đường thẳng( \(\Delta\)) đi qu và cắt (C) tại hai điểm phân biệt A, B sao cho độ dài đoạn AB nhỏ nhất có phương trình dạng x+by+c=0 ( b, c thuộc Z).Tính b+2c
lấy 4 điểm M,N,P,Q trong đó ba điểm M,N,P thẳng hàng và điểm Q nằm ngoài đường thẳng trên . Kẻ các đường thẳng đi qua các cặp điểm. Có bao nhiêu đường thẳng ( phân biệt ) ? Viết tên các đường thẳng đó