a) \(\dfrac{2^{14}.3^{12}}{6^{11}}\)
\(=\dfrac{2^2.2^{12}.3^{12}}{6^{11}}\)
\(=\dfrac{4.6^{12}}{6^{11}}\)
\(=4.6\)
\(=24\)
a) \(\dfrac{2^{14}.3^{12}}{6^{11}}=\dfrac{2^{14}.3^{12}}{2^{11}.3^{11}}=2^3.3\)
b) \(\dfrac{6^{18}}{9^9.8^5}=\dfrac{\left(2.3\right)^{18}}{\left(3^2\right)^8.\left(2^3\right)^5}\dfrac{2^{18}.3^{18}}{3^{18}.2^{15}}=2^3\)
a: \(\dfrac{2^{14}\cdot3^{12}}{6^{11}}=\dfrac{2^{14}\cdot3^{12}}{2^{11}\cdot3^{11}}=2^3\cdot3=24\)
b: \(\dfrac{6^{18}}{9^9\cdot8^5}=\dfrac{2^{18}\cdot3^{18}}{3^{18}\cdot2^{15}}=2^3\)