Chương 3: DÃY SỐ. CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Tien Dat

Viết đa thức \(f\left(x\right)=\left(x^2+2x-2\right)^8\) dưới dạng \(f\left(x\right)=a_0+a_1x+a_2x^2+...+a_{16}x^{16}\). Tính tổng \(S=a_1+a_3+...+a_{15}\)

Nguyễn Việt Lâm
4 tháng 1 2021 lúc 17:47

\(S_0=a_0+a_1+...+a_{16}=f\left(1\right)=1\)

Số hạng tổng quát trong khai triển:

\(\sum\limits^8_{k=0}C_8^k\left(x^2+2x\right)^k\left(-2\right)^{8-k}=\sum\limits^8_{k=0}C_8^k\left(-2\right)^{8-k}\sum\limits^k_{i=0}C_k^ix^{2i}\left(2x\right)^{k-i}\)

\(=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-2\right)^{8-k}2^{k-i}x^{i+k}\)

Số hạng không chứa x thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=0\end{matrix}\right.\)

\(\Rightarrow i=k=0\Rightarrow a_0=C_8^0C_0^0\left(-2\right)^82^0=2^8\)

Số hạng chứa \(x^{16}\) thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=16\end{matrix}\right.\)

\(\Rightarrow i=k=8\Rightarrow a_{16}=C_8^8C_8^8\left(-2\right)^0.2^0=1\)

\(\Rightarrow S=S_0-\left(a_0+a_{16}\right)=-2^8\)


Các câu hỏi tương tự
Rongluarose
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Big City Boy
Xem chi tiết
Sengoku
Xem chi tiết
Nguyen
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Big City Boy
Xem chi tiết
Thành Công
Xem chi tiết
Nguyễn Mạnh Vũ
Xem chi tiết