a) \(9x^2+6x+1=\left(3x\right)^2+2.3x.1+1^2=\left(3x+1\right)^2\)
b) \(x^2-x+\dfrac{1}{4}=x^2-2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2=\left(x-0,5\right)^2\)
c) \(x^2y^4-2xy^2+1=\left(xy^2\right)^2-2.xy^2.1+1^2=\left(xy^2-1\right)^2\)
d) \(x^2+\dfrac{2}{3}x+\dfrac{1}{9}=x^2+2.x.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2=\left(x+\dfrac{1}{3}\right)^2\)
a) \(9x^2+6x+1\)
\(=\left(3x\right)^2+2.3x.1+1^2\)
\(=\left(3x+1\right)^2\)
b) \(x^2-x+\dfrac{1}{4}\)
\(=x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2\)
c) \(x^2y^4-2xy^2+1\)
\(=\left(xy^2\right)^2-2.xy^2.1+1^2\)
\(=\left(xy^2-1\right)^2\)
d) \(x^2+\dfrac{2}{3}x+\dfrac{1}{9}\)
\(=x^2+2.x.\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\)
\(=\left(x+\dfrac{1}{3}\right)^2\)