Từ điểm M nằm ngoài đường tròn(O;R) sao cho OM =2R. Kẻ hai tiếp tuyến MA,MB với đường tròn(O;R) (A,B là các tiếp điểm). Đoạn thảng MO cắt đường tròn (O;R)tại P và cắt AB tại H. Tia AO cắt đường tròn (O;R) tại D và cắt tia MB tại K. Nối PK cắt BD tại G
a)CM 4 điểm M,A,O,B cùng nằm trên đường tròn
b) CM MO//BD
c) CM OG vuông góc với BD
d)Từ trung điểm I của AH vẽ đường thẳng vuông góc với AO cắt đường tròn (O;R) tại Q và J. CM MO là tiếp tuyến của (A;AQ)
Bài 13. Cho (O, R) và điểm M nằm ngoài đường tròn. Qua M kẻ hai tiếp tuyến MA, MB với (O; R). Đoạn OM cắt đường thẳng AB tại điểm H và cắt (O, R) tại I. I. CMR: M, A, B, O cùng thuộc 1 đường tròn. 2. Kẻ đường kính AD với (O, R). Đoạn MD cắt (O, R) tại C. CMR: MH. MO= MC. MD Em cần gấp
Cho điểm M nằm ngoài đường tròn (O ; R). Kẻ hai tiếp tuyến MA, MB với đường tròn ( A, B là tiếp điểm). QUa A kẻ đường thẳng song song với MB cắt (O) tại C. Nối MC cắt (O) tại D. Tia AD căst MB tại E.
a) Chứng minh: Tứ giác MAOB nội tiếp
b) Chứng minh: EM = EB
c) Xác định vị trí điểm M để BD⊥MA
Cho điểm M nằm ngoài đường tròn (O ; R). Kẻ hai tiếp tuyến MA, MB với đường tròn ( A, B là tiếp điểm). QUa A kẻ đường thẳng song song với MB cắt (O) tại C. Nối MC cắt (O) tại D. Tia AD căst MB tại E.
a) Chứng minh: Tứ giác MAOB nội tiếp
b) Chứng minh: EM = EB
c) Xác định vị trí điểm M để BD⊥MA
Cho điểm M nằm ngoài đường tròn (O ; R). Kẻ hai tiếp tuyến MA, MB với đường tròn ( A, B là tiếp điểm). QUa A kẻ đường thẳng song song với MB cắt (O) tại C. Nối MC cắt (O) tại D. Tia AD căst MB tại E.
a) Chứng minh: Tứ giác MAOB nội tiếp
b) Chứng minh: EM = EB
c) Xác định vị trí điểm M để BD⊥MA
Cho điểm M nằm ngoài (O;R) sao cho OM=2R. Kẻ 2 tiếp tuyến MA,MB với (O;R), ( A,B là tiếp điểm). Đoạn thẳng OM cắt (O;R) tại P và cắt AB tại H. Tia AO cắt (O;R) tại D và cắt MB tại K. Nối PK cắt BD tại G
a) Chứng minh MO song song với BD
b) Chứng minh OG vuông góc với BD
c) Tử trung điểm I của AH vẽ đường thẳng vuông góc với AO cắ đường tròn tại Q và J. Chứng minh MO là tiếp tuyến của ( A;AQ)
cho 2 đường tròn o và o tiếp xúc ngoài tại a. Trên tia Ax vuông góc với OO' lấy một điểm M. Vẽ tiếp tuyến MB với đường tròn (O),tiếp tuyến MC với đường tròn (O'), tia BO cắt tia CO tại N a. Chứng minh : MA=MB=MC b. Chứng minh tứ giác MBNC nội tiếp c. Chứng minh BC ⊥ MN
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) \(MA^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) MA\(^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.