a.Có MA,MB là tiếp tuyến của (O) cắt nhau tại M (gt)
=> MA=MB
Có MA,MC là tiếp tuyến của (O') cắt nhau tại M (gt)
=> MA=MC
Bắc cầu ta được MA=MB=MC
a.Có MA,MB là tiếp tuyến của (O) cắt nhau tại M (gt)
=> MA=MB
Có MA,MC là tiếp tuyến của (O') cắt nhau tại M (gt)
=> MA=MC
Bắc cầu ta được MA=MB=MC
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) \(MA^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.
Cho nửa đường tròn tâm O đường kính AB. Từ điểm M trên tiếp tuyến Ax của nửa đường tròn vẽ tiếp tuyến thứ hai MC với nửa đường tròn. Kẻ CH vuông góc với AB, MB cắt nửa đường tròn (O) tại Q và cắt CH tại N. Chứng minh: a) MO vuông góc AC. b) MA\(^2\)=MQ.MB c) MO cắt AC tại I. Chứng minh: A, I, Q, M cùng thuộc một đường tròn. d) NC = NH.
Cho đường tròn tâm O, điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp tuyến MB và MC với đường tròn ( B,C là 2 tiếp điểm). OM cắt BC tại I a) Chứng minh M,B,O,C cùng thuộc một đường tròn b) Kẻ đường kính BD của O. Cm MO vuông góc với BC và MO // CD c) Nối MD cắt (O) tại H. Cm MH.MD=MI.MO và góc MIH = góc OHD
Cho đường tròn (O;R) có đường kính AB. Vẽ tiếp tuyến Ax, lấy M bất kì thuộc tia Ax, MB cắt đường tròn (O) tại C.
a) Chứng minh AC vuông góc với MB.
b) Tính BC.BM theo R.
c) Vẽ dây AD vuông góc với OM tại H. Chứng minh MD2 = MC.MB.
Các cậu giúp mình với, mình cảm ơn nhiều ạ ! (Vẽ hình giúp mình với ~ . ~)
cho nửa đường tròn tâm O có đường kính AB=2R. Trên đường tròn O lấy điểm M ( MA<MB) . Tiếp tuyến tại M của O cắt hai tiếp tuyến tại A và B của đường tròn O lần lượt tại C và D a) chứng minh CD = AC+BD b) vẽ đường thẳng BM cắt tia AC tại E và vẽ MH vuông góc với AB tại H Chứng minh OC song song MB và ME.MB=AH.AB c) CM HM là tia phân giác của góc CHD
Qua điểm M nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến MN, MP (N,P là các tiếp điểm) và cát tuyến MAB (MA < MB ) nằm trong NMO.
a) Chứng minh: MO vuông góc NP tại H và tứ giác MNOP nội tiếp.
b) Chứng minh: HN là phân giác AHB.
c) Từ A vẽ đường thẳng song song với NB cắt MN tại C; NH tại D. Chứng minh A là trung điểm của CD.
Cho đường tròn (O;R) đường kính AB. Kẻ tiếp tuyến Ax với đường tròn. Trên Ax lấy điểm K(AK≥R). Qua K kẻ tiếp tuyến KM tới đường tròn(O). Đường thẳng d vuông góc với AB tại O, cắt MB tại E.
a. chứng minh 4 điểm K,A,O,M thuộc một đường tròn
b. OK cắt AM tại I, chứng minh OI.OK=OA2
Cho điểm M nằm ngoài đường tròn (O ; R). Kẻ hai tiếp tuyến MA, MB với đường tròn ( A, B là tiếp điểm). QUa A kẻ đường thẳng song song với MB cắt (O) tại C. Nối MC cắt (O) tại D. Tia AD căst MB tại E.
a) Chứng minh: Tứ giác MAOB nội tiếp
b) Chứng minh: EM = EB
c) Xác định vị trí điểm M để BD⊥MA