Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại A(2;1);điểm B nằm trên trục hoành,điểm C nằm trên trục tung sao cho các điểm B,C có tọa độ không âm.Tìm tọa độ các điểm B;C sao cho tam giác ABC có diện tích lớn nhất.
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1;2) và B(-3;1). Tìm tọa độ điểm C thuộc trục tung sao cho tam giác ABC vuông tại A.
Trong mặt phẳng tọa độ Oxy cho điểm D(6;2) và hai đường thẳng (d1): x-2y+1=0; (d2): x+2y-3=0. Viết phương trình đường thẳng \(\left(\Delta\right)\) đi qua D và cắt hai đường thẳng (d1); (d2) tại hai điểm B; C sao cho tam giác tạo bởi ba đường thẳng (d1); (d2); \(\left(\Delta\right)\) là tam giác cân, với BC là cạnh đáy.
trong mặt phẳng tọa độ oxy, cho tam giác ABC có A(1;7), B (-3;5) và C thuộc trục Ox, trọng tâm G của tam giác ABC nằm trên trục Oy. tọa độ điểm C là
Trong mặt phẳng Oxy, cho A(7;-2), B(-4;9). C(5;4)
a) Chứng minh 3 điểm A B C tạo thành tam giác. Tìm tọa độ D để ABCD là hình bình hành?
b) Tìm tọa độ chân đường cao H hạ từ đỉnh A của tam giác ABC?
c) Viết phương trình đường thẳng đi qua điểm M(-2;3) và vuông góc với đường thẳng (d):3x-4y+1=0.
Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại A và AC>AB.Gọi H là chân đường cao kẻ từ A của tam giác ABC.Trên tia HC lấy điểm D sao cho HA=HD,đường thẳng qua D vuông góc với BC cắt AC,AB lần lượt tại E(2;-2) và F.Phương trình CF:x+3y+9=0, đường thẳng BC đi qua M(5;12) và C có tung độ <-3.Xác định A,B,C.
Trong mặt phẳng tọa độ Oxy, cho đường thẩng d tiếp xúc với đường tròn tâm O bán kính bằng 1, cắt các trục Ox, Oy lần lượt tại các điểm A và B. Tính giá trị nhỏ nhất \(\Delta OAB\) có thể.
1, Trong mặt phẳng Oxy cho tam giác ABC có A(1;6) trực tâm H(1;2) tâm đường tròn ngoại tiếp tam giác là I(2;3) .Tìm tọa độ B,C biết B có hoành độ dương
Cho mặt phẳng tọa độ Oxy . Tam giác ABC nội tiếp đường tròn tâm I(—2;1) thỏa mãn điều kiện : góc AyB =90° . Chân đường cao kẻ từ A đến BC là D(—1;—1), đường thẳng AC đi qua điểm M(—1;4). Tìm tọa độ các đỉnh A, B biết điểm A có hoành độ dương.