Cho tam giác ABC và AM, BN CP là các đường phân giác trong của tam giác.
1) Tính tỉ số diện tích tam giác MNP và diện tích tam giác ABC theo các cạnh? Biết BC = a, AC = b, AB = c.
2) Giả sử tam giác ABC cân tại C và \(\dfrac{BC}{AB}=k\left(k\ne1\right)\). Chứng minh: \(\dfrac{S_{MNP}}{S_{ABC}}=\dfrac{k}{\left(k+1\right)^2}\)
Cho đương tròn tâm O, đường kính BC cố định và điểm A thuộc đường tròn (O). kẻ AH vuông góc BC tại H. Gọi I,K theo thứ tự là tâm đường tròn nội tiếp của tam giác AHB và AHC. Đường thẳng IK cắt AB tại M và cắt AC tại N.
a) Chứng minh tam giác AMN vuông cân
b) Xác định vị trí của điểm A để tứ giác BCNM nội tiếp
c) Chứng minh diện tích tam giác AMN nhỏ hơn hoặc bằng 1/2 diện tích tam giác ABC
Cho tam giác ABC nội tiếp đường tròn(O;R) phân giác góc BAC cắt(O) tại M vẽ đường cao AH và bán kính AO
a, Cm AM là phân giác của góc OAH
b, Giả sử góc B >góc C . Chứng minh góc OAH =góc B - góc C
c, Cho góc BAC =60° , góc OAH =20° .Tính các góc B, C của tam giác ABC
1. Cho đường tròn tâm O đường kính AB. Qua B kẻ tiếp tuyến d(M khác B),AM cắt đường tròn tại C(C khác A).Kẻ CH vuông góc với AB tại H.
a. Cm CH//MB
b. Cm BC vuông góc với AM và MA.MC=MB2
c. Qua O kẻ đường thẳng vuông góc với BC tại K cắt MB tại I.Chứng minh IC là tiếp tuyến tại C của đường tròn(O)
d. Tứ giác OBIC là hình gì khi diện tích tam giác ABC đạt giá trị lớn nhất.
2.Cho đường tròn tâm O đường kính AB=2R.Từ trung điểm H của đoạn OB kẻ đường thẳng vuông góc với AB cắtđường tròn tâm O tại C và D.
a. Chứng minh HC=HD và tứ giác ODBC là hình thoi.
b. Tính số đo góc BOC.
c. Gọi M là điểm đối xứng của O qua B. Chứng minh MC là tiếp tuyến tại C của đường tròn (O).Tính MC theo R.
d. Qua O kẻ đường thẳng vuông góc với OC cắt CD ở I. Chứng minh: HI.HD+HB.HM=R2
Cho tam giác ABC nội tiếp đường tròn (O). Các tia phân giác của góc B và góc C cắt nhau tại I và cắt đường tròn (O) lần lượt tại D và E. Dây DE cắt các cạnh AB và AC lần lượt tại M và N. c/m
a, tam giác AMN là tam giác cân
b, các tam giác EAI và DAI là những tam giác cân
c, tứ giác AMIN là hình thoi
Cho đường tròn(O) đường kính AB=2R và dây CD vuông góc AB tại H
a, Tính HA2+HB2+HC2+HD2 theo R
b, Chứng minh OH=HB .Tính chu vi tứ giác ABCD và diện tích đường tròn ở ngoài tứ giác ACBD theo R.
c, Cm trung tuyến HM của tam giác AHD vuông góc BC
Vẽ hình giúp mik với nhé.
Cho tam giác ABC có chu vi 58 cm, góc B = \(57^018'\) và góc C = \(82^035'\)
a) Tính AB, AC, BC
b) TÍnh đường cao AH
c) Tính trung tuyến AM
Cho tam giác ABC vuông tại A. Lấy B làm tâm vẽ đường tròn tâm B bán kính AB.Lấy C làm tâm vẽ đường tròn tâm C bán kính AC, hai đường tròn này cắt nhau tại điểm thứ 2 là D.Vẽ AM, AN lần lượt là các dây cung của đường tròn (B) và (C) sao cho AM vuông góc với AN và D nằm giữa M; N.
a) CMR: ΔABC = ΔDBC
b) CMR: ABDC là tứ giác nội tiếp
c) CMR: Ba điểm M, D, N thẳng hàng
d) Xác định vị trí của các dây AM; AN của đường tròn (B) và (C) sao cho đoạn MN có độ dài lớn nhất.
Cho tam giác ABC có \(\widehat{BAC}=60^o\), AC=b, AB=c(b>c). Đường kính EF của đường tròn ngoại tiếp tam giác ABC \(\perp BC\) tại M( E thuộc cung lớn BC).Gọi I và J là chân đường vuông góc hạ từ E xuống đường thẳng AB và AC.Gọi H và K là chân đường vuông góc kẻ từ F xuống các đường thẳng AB và AC.
a/ C/m các tứ giác AIEJ, CMJE nội tiếp và EA.EM=EC.EI.
b/C/m I,J,M thẳng hàng và IJ vuông góc với HK
c/ Tính độ dài BC và bán kính đường tròn ngoại tiếp tam giác ABC theo b,c.
(Mình chỉ cần câu b và c thôi nha!) @phynit, @Akai Haruma, @tran nguyen bao quan