Trong không gian Oxyz, cho tứ diện ABCD có \(A\left(8;6;-7\right),B\left(2;-1;4\right),C\left(0;-3;0\right),D\left(-8;-2;9\right)\)và đường thẳng \(\Delta:\frac{x+2}{2}=\frac{y-1}{1}=\frac{z-3}{-2}\). Mặt phẳng \(\left(P\right)\) chứa \(\Delta\) và cắt tứ diện ABCD thành 2 phần có thể tích bằng nhau, biết \(\left(P\right)\) có một vectơ pháp tuyến \(\overrightarrow{n}=\left(7;b;c\right)\). Tính \(S=b+c\).
A. 8
B. 11
C. 13
D. 9
Nhìn nhiều con số to thế này làm biếng tính toán ra quá, bạn có tính ra được tính chất đặc biệt nào của tứ diện này không? Ví dụ có cặp cạnh nào vuông góc, hoặc bằng nhau, hoặc đường thẳng đi qua trung điểm hay trọng tâm nào không?