Trong không gian Oxyz, cho hai điểm \(A\left(-2;1;3\right),B\left(3;-2;4\right)\); đường thẳng \(\Delta:\frac{x-1}{2}=\frac{y-6}{11}=\frac{z+1}{-4}\) và mặt phẳng \(\left(P\right):41x-6y+54z+49=0\). Đường thẳng \(\left(d\right)\) đi qua B, cắt \(\Delta\) và \(\left(P\right)\) lần lượt tại C và D sao cho thể tích của hai tứ diện ABCO và OACD bằng nhau, biết \(\left(d\right)\) có một vectơ chỉ phương là \(\overrightarrow{u}=\left(4;b;c\right)\). Tính \(S=b+c\).
A. 11
B. 6
C. 9
D. 4
Hướng giải quyết (làm biếng tính toán kiểu này :D):
- Nhận thấy ngay rằng B, C, D thẳng hàng nên A, B, C, D đồng phẳng
\(\Rightarrow\) khoảng cách từ O đến (ABC) và khoảng cách từ O đến (ACD) bằng nhau
\(\Rightarrow\) diện tích tam giác ABC = diện tích tam giác ACD
Mà hai tam giác này chung cạnh đáy AC
\(\Rightarrow\) khoảng cách từ B đến AC bằng khoảng cách từ D đến AC
\(\Rightarrow\) C là trung điểm của BD
Đến đây thì chắc là đơn giản lắm rồi