Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thanh Hải

Trong không gian với hệ trục tọa độ Oxyz,qua 2 điểm M(1;-1;1) và N(0;-1;0) lập phương trình mặt phẳng \(\alpha\) cắt mặt cầu \(\left(S\right)\left(x+2\right)^2+\left(y+1\right)^2+\left(z-1\right)^2=5\) một thiết diện đường tròn mà diện tích hình tròn sinh bởi đường tròn có diện tích \(S=\pi\)

Nguyễn Trọng Nghĩa
5 tháng 4 2016 lúc 20:56

Mặt cầu (S) có tâm I(-2;-1;1) và bán kính \(R=\sqrt{5}\)

Gọi r là bán kinh đường tròn thiết diện, theo giả thiết ta có : \(S=\pi\Leftrightarrow r^2.\pi=\pi\Rightarrow r=1\)

Gọi d là khoảng cách từ I đến mặt phẳng \(\alpha\), ta có \(d^2=R^2-r^2=5-1\Rightarrow d=2\)

Mặt phẳng  \(\alpha\), qua N (0;-1;0) có dạng \(Ax+B\left(y+1\right)+Cz=0\Leftrightarrow Ax+By+Cz+B=0\left(A^2+B^2+C^2\ne0\right)\)

Mặt khác,  \(\alpha\)  qua M(1;-1;1) nên thỏa mãn \(A+C=0\Rightarrow\text{ }\) \(\alpha:Ax+By-Az+B=0\)

Vì \(d=d\left(I,\alpha\right)=\frac{\left|-3A\right|}{\sqrt{2A^2+B^2}}=2\Leftrightarrow A^2=4B^2\Rightarrow\frac{A}{B}=\pm2\) vì \(A^2+B^2+C^2\ne0\)

Do đó có 2 mặt phẳng  \(\alpha\), cần tìm là \(2x+y-2z+1=0\) và \(2x-y-2z-1=0\)


Các câu hỏi tương tự
Phước Lộc
Xem chi tiết
AllesKlar
Xem chi tiết
Thành Đạt
Xem chi tiết
Thành Đạt
Xem chi tiết
Phước Lộc
Xem chi tiết
Nguyễn Thái Quân
Xem chi tiết
Nguyễn Thái Quân
Xem chi tiết
Nguyễn Thái Quân
Xem chi tiết
lưu hương
Xem chi tiết