Vì \(\Delta ABE \backsim \Delta ACD\) nên ta có:
\(\frac{{AB}}{{AC}} = \frac{{BE}}{{CD}} \Leftrightarrow \frac{{20}}{{50}} = \frac{8}{{CD}} \Rightarrow CD = 8.50:20 = 20\)
Vậy độ rộng của khúc sông là 20m.
Vì \(\Delta ABE \backsim \Delta ACD\) nên ta có:
\(\frac{{AB}}{{AC}} = \frac{{BE}}{{CD}} \Leftrightarrow \frac{{20}}{{50}} = \frac{8}{{CD}} \Rightarrow CD = 8.50:20 = 20\)
Vậy độ rộng của khúc sông là 20m.
Cho hình bình hành ABCD. Một đường thẳng đi qua D lần lượt cắt đoạn thẳng BC và tia AB tại M và N sao cho điểm M nằm giữa hai điểm B và C. Chứng minh:
a) \(\Delta NBM \backsim \Delta NAD\)
b) \(\Delta NBM \backsim \Delta DCM\)
c) \(\Delta NAD \backsim \Delta DCM\)
Cho \(\Delta ABC \backsim \Delta MNP\) và \(AB = 4,BC = 6,CA = 5,MN = 5\). Tính độ dài các cạnh NP, PM.
Cho tam giác ABC. Gọi B’, C’ lần lượt là trung điểm của AB, AC. Chứng minh \(\Delta AB'C' \backsim \Delta ABC\).
Cho \(\Delta A'B'C' \backsim \Delta ABC\) và \(AB = 3,\,\,BC = 2,\,\,CA = 4,\,\,A'B' = x,\,\,B'C' = 3,\,\,C'A' = y\). Tìm \(x\) và \(y\).
Cho \(\Delta ABC \backsim \Delta MNP\) và \(\widehat A = 45^\circ ,\,\,\widehat B = 60^\circ \). Tính các góc C, M, N, P.
Ba vị trí A, B, C trong thực tiễn lần lượt được mô tả bởi ba đỉnh của tam giác A’B’C’ trên bản vẽ. Biết tam giác A’B’C’ đồng dạng với tam giác ABC theo tỉ số \(\frac{1}{{1\,000\,000}}\) và \(A'B' = 4cm,\,\,B'C' = 5cm,\,\,C'A' = 6cm\). Tính khoảng cách giữa hai vị trí A và B, B và C, C và A trong thực tiễn (theo đơn vị kilômét).
Cho tam giác ABC, điểm M nằm trên cạnh BC. Gọi A', B', C' lần lượt là trung điểm của các đoạn thẳng MA, MB, MC (Hình 47)
a) So sánh các cặp góc:
\( \widehat {B'A'C'} \) và \( \widehat {BAC} \); \( \widehat {C'B'A'} \) và \( \widehat {CBA} \); \( \widehat {A'C'B'} \) và \( \widehat {ACB} \).
b) So sánh các tỉ số: \( \frac{A'B'}{AB} \); \( \frac{B'C'}{BC} \); \( \frac{C'A'}{CA} \).
Cho tam giác ABC (Hình 55), các điểm M, N thuộc cạnh AB thỏa mãn \(AM = MN = NB\), các điểm P, Q thuộc cạnh AC thỏa mãn \(AP = PQ = QC\). Tam giác AMP đồng dạng với những tam giác nào?