Bài 5. Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho hình bình hành ABCD. Một đường thẳng đi qua D lần lượt cắt đoạn thẳng BC và tia AB tại M và N sao cho điểm M nằm giữa hai điểm B và C. Chứng minh:

a)      \(\Delta NBM \backsim \Delta NAD\)

b)     \(\Delta NBM \backsim \Delta DCM\)

c)      \(\Delta NAD \backsim \Delta DCM\)

a) Vì ABCD là hình bình hành nên \(AD//BC\) hay \(AD//BM\)

\( \Rightarrow \Delta NBM \backsim \Delta NAD\) (Định lý về cặp tam giác đồng dạng nhận dược từ định lý Thales)

b) Vì ABCD là hình bình hành nên\(AB//CD\) hay \(BN//CD\)

\( \Rightarrow \Delta NBM \backsim \Delta DCM\) (Định lý về cặp tam giác đồng dạng nhận dược từ định lý Thales)

c) Ta có \(\Delta NBM \backsim \Delta NAD\) (chứng minh ở câu a) và \(\Delta NBM \backsim \Delta DCM\) (chứng minh ở câu b) nên \(\Delta NAD \backsim \Delta DCM\).


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Hà Quang Minh
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết