Tính tổng tất cả các giá trị m để đường thẳng \(\left(d\right):y=mx+3\) cắt parabol \(\left(P\right):y=x^2-4x+3\) tại 2 điểm A,B và \(S_{\Delta OAB}=\frac{9}{2}\)
Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
Tìm tất cả các giá trị thực của tham số m để hàm số y = x^2 - 5x + 7 + 2m cắt trục hoành tại 2 điểm phân biệt có hoành độ thuộc [1;5]. A. \(3\le m\le7\)B. \(\dfrac{3}{4}\le m\le7\)C. \(-\dfrac{7}{2}\le m\le-\dfrac{3}{8}\)D. \(\dfrac{3}{8}\le m\le\dfrac{7}{2}\)
Tập tất cả các giá trị thực của tham số m để hàm số y = \(-\dfrac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1) là ?
Tìm tất cả giá trị thực của m để đường thẳng \(y=m^2x+2\) cắt đường thẳng y=4x+3
Tìm tất cả các giá trị m để hàm số y= -x^2+2|m-1|x-3 nghịch biến trên (2;+\(\infty\))
cho hàm số y=x2+4x-3. tìm m để đường thẳng d:y=-mx-3 cắt (p) tại 2 điểm phân biệt A,B sao cho trung điểm AB nằm trên trục Ox
1. Tìm tất cả các giá trị thực của m để phương trình -2x2 - 4x +3 = m có nghiệm.
A. \(1\le m\le5\) B. \(-4\le m\le0\) C. \(0\le m\le4\) D. \(m\le5\)
2. Cho (P): y = x2 + x + 2 và đường thẳng (d): y = ax + 1. Tìm tất cả các giá trị thực của a để (P) tiếp xúc với (d).
A. \(a=-1;a=3\) B. \(a=2\) C. \(a=1;a=-3\) D. Không tồn tại a
3. Cho (P): y = x2 - 2x + m - 1. Tìm tất cả các giá trị thực của m để (P) không cắt Ox.
A. \(m< 2\) B. \(m>2\) C. \(m\ge2\) D. \(m\le2\)
cho hàm số y = x2 -2mx -m -2 (1) ( m là tham số thực )
tìm tất cả các giá trị của tham số m để đồ thị hàm số (1) cắt đường thẳng d: y = 2x -7 tại 2 điểm phân biệt có hoành độ đều lớn hơn -1