Hàm nghịch biến trên khoảng đã cho khi:
\(-\dfrac{b}{2a}=\left|m-1\right|\le2\)
\(\Rightarrow-2\le m-1\le2\)
\(\Rightarrow-1\le m\le3\)
Hàm nghịch biến trên khoảng đã cho khi:
\(-\dfrac{b}{2a}=\left|m-1\right|\le2\)
\(\Rightarrow-2\le m-1\le2\)
\(\Rightarrow-1\le m\le3\)
hàm số y = x2 +(m+1)x +3 đồng biến trên (1;\(+\infty\) ) khi giá trị m thõa........
Câu 1: Tìm GTNN của hàm số y = \(\sqrt[3]{x^4+16x^2+64}-3\sqrt[3]{x^2+8}+1\)
Câu 2: Hàm số y = \(-x^2+2\left(m-1\right)x+3\) nghịch biến trên( \(\left(2;+\infty\right)\)
Câu 3: Gọi M và là GTLN và nhỏ nhất của hàm số y = \(x^2-4x\) trên đoạn [0;4]. Giá trị của M + m là bao nhiêu?
Câu 4: Tìm tất cả cái giá trị của tham số m để hàm số y = \(-x^2+2\left|m-1\right|x-3\) nghịch biến trên \(\left(2;+\infty\right)\)
Câu 5: Tìm tất cả các gí trị của tham số a để GTNN của hàm số y = f(x) =\(4x^2-4ax+\left(a^2-3x+2\right)\)trên đoạn [0;2] là bằng 3?
Biết hàm số \(y=ax^2+2x+b\) có giá trị lớn nhất là 4 , đồng biến trên khoảng \(\left(-\infty;1\right)\) và nghịch biến trên khoảng \(\left(1;+\infty\right)\) . Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng:
A. 3. B. . C. 1 . D. .
Tìm tất cả các giá trị của m để hàm số sau xác định trên R:
a, \(y=\dfrac{x+3}{\left(2m-4\right)x+m^2-9}\)
b, \(y=\dfrac{x+3}{x^2-2\left(m-3\right)x+9}\)
c, \(y=\dfrac{x+3}{\sqrt{x^2+6x+2m-3}}\)
d, \(y=\dfrac{x+3}{\sqrt{-x^2+6x+2m-3}}\)
e, \(y=\dfrac{x+3}{\sqrt{x^2+2\left(m-1\right)x+2m-2}}\)
Tập tất cả các giá trị thực của tham số m để hàm số y = \(-\dfrac{mx}{\sqrt{x-m+2}-1}\) xác định trên (0;1) là ?
Với giá trị nào của m thì hàm số sau nghịch biến trên tập xác định :
a, y = (m-2)x + 5
b, y = (m+1)x+m-2
Cho hàm số \(y=\sqrt{x-1}+x^2-2x\)
a, Xét sự biến thiên của hàm số đã cho trên [ 1;+\(\infty\))
b, Tìm giá trị lớn nhất nhỏ nhất của hàm số trên đoạn \(\left[2;5\right]\)
please help me
i need it now
Với giá trị nào của m thì hàm số đồng biến? nghịch biến?
a, y = (2m+3)x-m+1
b, y = (2m+5)x+m+3
c, y = mx-3-x
d, y = m(x+2)
Tìm tất cả các giá trị thực của tham số m để hàm số y=-x2 +(m-1)x+2 nghịch biến trên khoảng (1;2)