Lời giải:
Xét 1 đa thức bất kỳ:
\(P(x)=a_nx^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_1x+a_0x^0\)
Giả sử $n$ chẵn.
Khi đó: \(x^{n}; x^{n-2},...,x^0\) là các lũy thừa bậc chẵn nên các hệ số bậc chẵn là:\(a_n,a_{n-2},...,a_0\)
Tương tự: \(x^{n-1}; x^{n-3},...,x^1\) là các lũy thừa bậc lẻ, nên các hệ số bậc lẻ là: \(a_{n-1}. a_{n-3},...,a_1\)
Ta có: \((-1)^k=1\) nếu k chẵn, và \((-1)^k=-1\) nếu k lẻ.
\(P(-1)=a_n(-1)^{n}+a_{n-1}(-1)^{n-1}+a_{n-2}(-1)^{n-2}+...+a_1(-1)+a_0\)
\(=(a_n+a_{n-2}+...+a_0)-(a_{n-1}+a_{n-3}+..+a_1)\)
\(=0\) (do tổng hệ số lũy thừa bậc chẵn bằng tổng hệ số lũy thừa bậc lẻ)
Vì \(P(-1)=0\) nên đa thức khi phân tích có nhân tử \(x+1\)