Ta có: \(\dfrac{-1}{3}\cdot\dfrac{141}{17}-\dfrac{39}{3}\cdot\dfrac{-1}{17}\)
\(=\dfrac{-1}{3}\cdot\dfrac{141}{17}-\dfrac{-1}{3}\cdot\dfrac{39}{17}\)
\(=\dfrac{-1}{3}\cdot\left(\dfrac{141}{17}-\dfrac{39}{17}\right)\)
\(=\dfrac{-1}{3}\cdot6=-2\)
Ta có: \(\dfrac{-1}{3}\cdot\dfrac{141}{17}-\dfrac{39}{3}\cdot\dfrac{-1}{17}\)
\(=\dfrac{-1}{3}\cdot\dfrac{141}{17}-\dfrac{-1}{3}\cdot\dfrac{39}{17}\)
\(=\dfrac{-1}{3}\cdot\left(\dfrac{141}{17}-\dfrac{39}{17}\right)\)
\(=\dfrac{-1}{3}\cdot6=-2\)
Cho \(m + \dfrac{1}{n+\dfrac{1}{p}}=\dfrac{17}{3}\). Tính n.
\(\dfrac{1^4+4}{3^4+4}.\dfrac{5^4+4}{7^4+4}....\dfrac{17^4+4}{19^4+4}\)=M
tính m
giải phương trình sau
\(a,\dfrac{4x-17}{2x^2+1}=0\\ b,\dfrac{4}{x-2}-x+2=0\\ c,x+\dfrac{1}{x}=x^2+\dfrac{1}{x^2}\\ d,\dfrac{x-3}{x-2}-\dfrac{x-2}{x-4}=3^1_5\)
Tính giá trị A= \(3\dfrac{1}{117}.\dfrac{1}{119}-\dfrac{4}{117}.5\dfrac{118}{119}-\dfrac{5}{117.119}+\dfrac{8}{39}\)
Rút gọn biểu thức
\(A=\dfrac{1^4+4}{3^4+4}+\dfrac{5^4+4}{7^4+4}+\dfrac{9^4+4}{11^4+4}+\dfrac{13^4+4}{15^4+4}+\dfrac{17^4+4}{19^4+4}\)
Cho đa thức: \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\). CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
tìm x,y viết dưới dạng phân số
a. \(5+\dfrac{x}{5+\dfrac{2}{5+\dfrac{3}{5+\dfrac{4}{5}}}}=\dfrac{x}{1+\dfrac{5}{2+\dfrac{4}{3+\dfrac{3}{5+\dfrac{1}{6}}}}}\)
b.
\(\dfrac{y}{3+\dfrac{5}{2+\dfrac{4}{2+\dfrac{5}{2+\dfrac{4}{2+\dfrac{5}{3}}}}}}+\dfrac{y}{7+\dfrac{1}{3+\dfrac{1}{3+\dfrac{1}{4}}}}\)
= 2
c,
\(x.\left(\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+1}}}}}}}}\right)=\)\(2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2}}}}}}}\)+\(x.\left(3+\dfrac{1}{3-\dfrac{1}{3+\dfrac{1}{3+\dfrac{1}{3-\dfrac{1}{3}}}}}\right)\)
Giair bằng máy tính casio
Cho 3 số a,b,c khác 0 thỏa mãn (a+b+c)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\).Tinh GTBT R=(a2017+b2017)+(b2019+c2019)+(c2021+a2021).
Giải các phương trình:
\(a,2x^4+3x^3+8x^2+6x+5=0\)
b, \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)