Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Thị Minh Châu

Cho 3 số a,b,c khác 0 thỏa mãn (a+b+c)\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\).Tinh GTBT R=(a2017+b2017)+(b2019+c2019)+(c2021+a2021).

Nguyễn Việt Lâm
20 tháng 1 2019 lúc 12:48

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{ab+ac+bc}{abc}\right)=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c\left(ab+ac+bc\right)-abc=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-b\\a=-c\\b=-c\end{matrix}\right.\)

Đến đây thì nghi ngờ bạn chép sai đề biểu thức R, lẽ ra phải là dấu nhân mới tính được, nếu ko thì kết quả vẫn còn 2 ẩn

\(R=\left(a^{2017}+b^{2017}\right)\left(b^{2019}+c^{2019}\right)\left(c^{2021}+a^{2021}\right)\)

Thế này mới chính xác, kết quả \(R=0\)


Các câu hỏi tương tự
Kamato Heiji
Xem chi tiết
Hồ Thị Minh Châu
Xem chi tiết
oooloo
Xem chi tiết
Hồ Thị Minh Châu
Xem chi tiết
Gallavich
Xem chi tiết
Vũ Phương Thảo
Xem chi tiết
Mạnh Dũng
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết