\(B=\dfrac{2016}{1\cdot2}+\dfrac{2016}{2\cdot3}+...+\dfrac{2016}{2016\cdot2017}\)
\(=2016\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)
\(=2016\cdot\dfrac{2016}{2017}=\dfrac{4064256}{2017}\)
\(B=\dfrac{2016}{1\cdot2}+\dfrac{2016}{2\cdot3}+...+\dfrac{2016}{2016\cdot2017}\)
\(=2016\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2016}-\dfrac{1}{2017}\right)\)
\(=2016\cdot\dfrac{2016}{2017}=\dfrac{4064256}{2017}\)
Cho A= \(\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+...................+\frac{2016}{4030}-2016\) và B= \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+...................+\frac{1}{4030}\) . Chứng minh rằng \(\frac{A}{B}\) là một số nguyên
Cho A= \(\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+...................+\frac{2016}{4030}-2016\) và B= \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+...................+\frac{1}{4030}\) . Chứng minh rằng \(\frac{A}{B}\) là một số nguyên
Cho: \(A=\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+..............+\frac{2016}{4030}-2016\)
và \(B=\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+.............+\frac{1}{4030}\)
Chứng minh rằng: \(\frac{A}{B}\) là một số nguyên
cho M=1-1/2+1/3-1/4+...+1/2015-1/2016+1/2017
N= 1/1009+1/1010+....+1/2016+1/2017
tính (M-N)^2017
Cho
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2016}+\frac{1}{2017}\)
\(B=\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)
Tính \(\frac{B}{A}\) ?
Bài 1: Tính:
P=\(\dfrac{3^{2016}-6^{2016}+9^{2016}-12^{2016}+15^{2016}-18^{2016}}{-1^{2016}+2^{2016}-3^{2016}+4^{2016}-5^{2016}+6^{2016}}\)
Cho S = 1 - 1/2 + 1/3 -1/4 +...+ 1/2015 1/2016 + 1/2017
Và P = 1/1009 + 1/2010 +....+ 1/2016 + 1/2017
Tính ( S - P )2017
Cho \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\); \(B=\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}\)
Tính \(\frac{A}{B}\)
Cho các số nguyên dương a,b,c,d và \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh rằng: \(\frac{\left(a^{2016}+b^{2016}\right)^{2017}}{\left(c^{2016}+d^{2016}\right)^{2017}}=\frac{\left(a^{2017}-b^{2017}\right)^{2016}}{\left(c^{2017}-d^{2017}\right)^{2016}}\)