cho M=1-1/2+1/3-1/4+...+1/2015-1/2016+1/2017
N= 1/1009+1/1010+....+1/2016+1/2017
tính (M-N)^2017
Tính: A = (1- 1/2)(1-1/3)(1-1/4)...(1-1/2016)(1-1/2017)
S= 2^2010 - 2^2009 - 2^2008 - ... - 2 - 1
Cho A= \(\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+...................+\frac{2016}{4030}-2016\) và B= \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+...................+\frac{1}{4030}\) . Chứng minh rằng \(\frac{A}{B}\) là một số nguyên
Cho A= \(\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+...................+\frac{2016}{4030}-2016\) và B= \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+...................+\frac{1}{4030}\) . Chứng minh rằng \(\frac{A}{B}\) là một số nguyên
Cho: \(A=\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+..............+\frac{2016}{4030}-2016\)
và \(B=\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+.............+\frac{1}{4030}\)
Chứng minh rằng: \(\frac{A}{B}\) là một số nguyên
so sánh a,b biết: a= 2^2018-3/2^2017-1 và b=2^2017-3/2^2016-1
tìm x biết (\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)+...+\(\dfrac{1}{2018}\)).x=\(\dfrac{2017}{1}+\dfrac{2016}{2}+\dfrac{2015}{3}+...+\dfrac{2}{2016}+\dfrac{1}{2017}\)
Cho A=\(\left(\dfrac{1}{2}-1\right).\left(\dfrac{1}{3}-1\right).\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{2015}-1\right).\left(\dfrac{1}{2016}-1\right).\left(\dfrac{1}{2017}-1\right)\)
B=\(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{2015}\right).\left(-1\dfrac{1}{2016}\right).\left(-1\dfrac{1}{2017}\right)\)
Tính M=A.B
Cho \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\); \(B=\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}\)
Tính \(\frac{A}{B}\)