Vậy \(\frac{A}{B}=\frac{1}{2017}.\)
Chúc bạn học tốt!
Vậy \(\frac{A}{B}=\frac{1}{2017}.\)
Chúc bạn học tốt!
Cho
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2016}+\frac{1}{2017}\)
\(B=\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)
Tính \(\frac{B}{A}\) ?
Cho A= \(\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+...................+\frac{2016}{4030}-2016\) và B= \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+...................+\frac{1}{4030}\) . Chứng minh rằng \(\frac{A}{B}\) là một số nguyên
Cho A= \(\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+...................+\frac{2016}{4030}-2016\) và B= \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+...................+\frac{1}{4030}\) . Chứng minh rằng \(\frac{A}{B}\) là một số nguyên
Cho: \(A=\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+..............+\frac{2016}{4030}-2016\)
và \(B=\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+.............+\frac{1}{4030}\)
Chứng minh rằng: \(\frac{A}{B}\) là một số nguyên
Cho A=\(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)+...+\(\frac{1}{2017}\)
B=\(\frac{1}{2016}\)+\(\frac{2}{2015}\)+\(\frac{3}{2014}\)+...+\(\frac{2015}{2}\)+\(\frac{2016}{1}\)
Tính\(\frac{A}{B}\)
1.Cho \(\frac{a_1}{2a_2}=\frac{2a_2}{3a_3}=.......=\frac{2015a_{2015}}{2016a_{2016}}=\frac{2016a_{2016}}{a_1}\) và \(a_1+a_2+a_3+...+a_{2016}\ne0\)
CMR \(a_1=a_2=a_3...=a_{2016}\)
2.Cho\(\frac{a}{2014}=\frac{a}{2015}=\frac{a}{2016}\) CMR:\(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
3.Tìm x,y,z biết \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và \(x^2-\left(x-y\right)=0\)
4.Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) CMR \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
Giúp mình với ạ!Mai phải nộp rồi☹
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}\)
\(B=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\)
Tính \(\left(A^{2017}-B^{2017}\right)^{2018}\)
Tính: \(A=1+\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+............+\frac{2014}{2^{2014}}+\frac{2015}{2^{2015}}\)
Tính B\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\frac{2016}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2016}}\)