Ta có:
\(\Rightarrow A=B.\)
\(\Rightarrow A^{2017}=B^{2017}\)
\(\Rightarrow\left(A^{2017}-B^{2017}\right)^{2018}=\left(B^{2017}-B^{2017}\right)^{2018}=0^{2018}=0.\)
Vậy \(\left(A^{2017}-B^{2017}\right)^{2018}=0.\)
Chúc bạn học tốt!
Ta có:
\(\Rightarrow A=B.\)
\(\Rightarrow A^{2017}=B^{2017}\)
\(\Rightarrow\left(A^{2017}-B^{2017}\right)^{2018}=\left(B^{2017}-B^{2017}\right)^{2018}=0^{2018}=0.\)
Vậy \(\left(A^{2017}-B^{2017}\right)^{2018}=0.\)
Chúc bạn học tốt!
Giúp tôi làm bài này được chứ?
1. Tính giá trị của biểu thức: H = \(\frac{2^{19}.27^3.5-15.\left(-4\right)^9.9^4}{6^9.2^{10}-\left(-12\right)^{10}}\)
2. Cho A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2016}+\frac{1}{2017}-\frac{1}{2018}\);
B = \(\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\)
Tính (A2017 \(-\) B2017)2018
Cho S = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
P = \(1+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}\)
Chứng minh rằng: \(\left(S-P\right)^{2018}=1\)
Tính P = \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2019}}{\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+....\frac{1}{2018}}\)
a)\(\frac{x+1}{5}+\frac{x+1}{6}+\frac{x+1}{7}=\frac{x+1}{8}+\frac{x+1}{9}\)
b)\(\frac{x+6}{2015}+\frac{x+5}{2016}+\frac{x+4}{2017}=\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2010}\)
c)\(\frac{x+6}{2016}+\frac{x+7}{2017}+\frac{x+8}{2018}=\frac{x+9}{2019}+\frac{x+10}{2020}+1\)
d)\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
ai xong nhanh nhất và đúng em xin gửi 2 SP ạ
Cho A= \(\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+...................+\frac{2016}{4030}-2016\) và B= \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+...................+\frac{1}{4030}\) . Chứng minh rằng \(\frac{A}{B}\) là một số nguyên
Cho A= \(\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+...................+\frac{2016}{4030}-2016\) và B= \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+...................+\frac{1}{4030}\) . Chứng minh rằng \(\frac{A}{B}\) là một số nguyên
Cho: \(A=\frac{1}{2015}+\frac{2}{2016}+\frac{3}{2017}+..............+\frac{2016}{4030}-2016\)
và \(B=\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+.............+\frac{1}{4030}\)
Chứng minh rằng: \(\frac{A}{B}\) là một số nguyên
Tính B\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}{\frac{2016}{1}+\frac{2003}{2}+\frac{2002}{3}+...+\frac{1}{2016}}\)
Cho
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2016}+\frac{1}{2017}\)
\(B=\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)
Tính \(\frac{B}{A}\) ?