Lời giải:
Đặt \(A=(x+2)(x-2)(x^2+2^2)(x^4+2^4)(x^8+2^8)\)
\(A=[(x+2)(x-2)][(x^2+2^2)(x^4+2^4)(x^8+2^8)]\)
\(=(x^2-2^2)(x^2+2^2)(x^4+2^4)(x^8+2^8)\)
\(=(x^4-2^4)(x^4+2^4)(x^8+2^8)\)
\(=(x^8-2^8)(x^8+2^8)\)
\(=x^{16}-2^{16}\)
Lời giải:
Đặt \(A=(x+2)(x-2)(x^2+2^2)(x^4+2^4)(x^8+2^8)\)
\(A=[(x+2)(x-2)][(x^2+2^2)(x^4+2^4)(x^8+2^8)]\)
\(=(x^2-2^2)(x^2+2^2)(x^4+2^4)(x^8+2^8)\)
\(=(x^4-2^4)(x^4+2^4)(x^8+2^8)\)
\(=(x^8-2^8)(x^8+2^8)\)
\(=x^{16}-2^{16}\)
Các bạn giải giúp mình bài này với:
Chứng minh đẳng thức sau:
\(\dfrac{\left[x-1\right]\left[x^2+1\right]\left[x^4+1\right]\left[x^8+1\right]}{\left[x^2-x+1\right]\left[x^4-x^3+1\right]}=\dfrac{x^{16}+1}{x^9+1}\)
Rút gọn biểu thức:
a) \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
b) \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
Bài 1 : dùng hẳng đẳng thức để khai triển và thu gọn
a) \(\left(2x^2+\frac{1}{3}\right)^3\)
b) \(\left(2x^2y-3xy\right)^3\)
c) \(\left(-3xy^4+\frac{1}{2}x^2y^2\right)^3\)
d) \(\left(-\frac{1}{3}ab^2-2a^3b\right)^3\)
e) \(\left(x+1\right)^3-\left(x-1\right)^3-6.\left(x-1\right).\left(x+1\right)\)
f) \(x.\left(x-1\right).\left(x+1\right)-\left(x+1\right).\left(x^2-x+1\right)\)
g) \(\left(x-1\right)^3-\left(x+2\right).\left(x^2-2x+4\right)+3.\left(x-4\right).\left(x+4\right)\)
h) \(3x^2.\left(x+1\right).\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right).\left(x^4+x^2+1\right)\)
k) \(\left(x^4-3x^2+9\right).\left(x^2+3\right)+\left(3-x^2\right)^3-9x^2.\left(x^2-3\right)\)
l) \(\left(4x+6y\right).\left(4x^2-6xy+9y^2\right)-54y^3\)
Chúng minh đẳng thức:
\(\dfrac{2}{x\left(x+1\right)}+\dfrac{2}{\left(x+1\right)\left(x+2\right)}+\dfrac{2}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{2}{\left(x+2014\right)\left(x+2015\right)}=\dfrac{4030}{x\left(x+2015\right)}\)
Tính: \(\left(x-1\right).\left(x+1\right).\left(x^2+1\right).\left(x^4+1\right).\left(x^8+1\right).\left(x^{16}+1\right)\)
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
Bài 1: Rút gọn biểu thức
a. \(\left(x-3\right)\left(x+7\right)-\left(x+5\right)\left(x-1\right)\)
b. \(x^2\left(x-4\right)\left(x+4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
Bài 2: Tìm x
a. \(x^2-25-\left(x+5\right)=0\)
b. \(3x\left(x-2\right)-x+2=0\)
c. \(x\left(x-4\right)-2x+8=0\)
Giải các phương trình sau:
a) \(x^2+\dfrac{2x}{x-1}=8\)
b) \(\dfrac{x^2+2x+1}{x^2+2x+2}+\dfrac{x^2+2x+2}{x^2+2x+3}=\dfrac{7}{6}\)
c) \(\dfrac{x+4}{x-1}+\dfrac{x-4}{x+1}=\dfrac{x+8}{x-2}+\dfrac{x-8}{x+2}+6\)
d) \(\left(x^2+6x+8\right)\left(x^2+8x+15\right)=24\)
e) \(\left(x^2+x-2\right)\left(x^2+9x+18\right)=28\)
f) \(3\left(-x^2+2x+3\right)^4-26x^2\left(-x^2+2x+3\right)^2-9x^4=0\)
g) \(x^4+6x^3+11x^2+6x+1=0\)
h) \(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2=0\)
i) \(\left(x+2\right)^4+\left(x+8\right)^4=272\)
Giải phương trình:\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x+\dfrac{1}{x}\right)^2\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)