\(VT=\dfrac{2}{x}-\dfrac{2}{x+1}+\dfrac{2}{x+1}-\dfrac{2}{x+2}+...+\dfrac{2}{x+2014}-\dfrac{2}{x+2015}\)
\(VT=\dfrac{2}{x}-\dfrac{2}{x+2015}=\dfrac{2\left(x+2015-x\right)}{x\left(x+2015\right)}=\dfrac{4030}{x\left(x+2015\right)}\)
\(VT=\dfrac{2}{x}-\dfrac{2}{x+1}+\dfrac{2}{x+1}-\dfrac{2}{x+2}+...+\dfrac{2}{x+2014}-\dfrac{2}{x+2015}\)
\(VT=\dfrac{2}{x}-\dfrac{2}{x+2015}=\dfrac{2\left(x+2015-x\right)}{x\left(x+2015\right)}=\dfrac{4030}{x\left(x+2015\right)}\)
Tính
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+.....+\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
giải pt: \(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)
Bài 1:cho phương trình
a,\(\left(x-1\right)^3-x\left(x-1\right)^2=5x\left(2-x\right)-11\left(x+2\right)\)
b,\(\dfrac{\left(x+10\right)\left(x+4\right)}{12}-\dfrac{\left(x+4\right)\left(2-x\right)}{4}=\dfrac{\left(x+10\right)\left(x-2\right)}{3}\)
c,\(\dfrac{2\left(x-3\right)}{7}+\dfrac{x-5}{3}=\dfrac{13x+4}{21}\)
d,\(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{5}\)
e,\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)
\(\dfrac{2}{2^2-x^2}+\dfrac{1}{2x+x^2}\)
=\(\dfrac{2}{\left(2-x\right)\left(2+x\right)}+\dfrac{1}{x\left(x+2\right)}\)
=\(\dfrac{2x}{x\left(2-x\right)\left(2+x\right)}+\dfrac{\left(2-x\right)}{x\left(2-x\right)\left(2+x\right)}\)
=\(\dfrac{2x+2-x}{x\left(2-x\right)\left(2+x\right)}\)
=\(\dfrac{x+2}{x\left(2-x\right)\left(2+x\right)}\)
Thực hiện phép tính:
\(a,\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)
\(b,\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
Thực hiện phép tính:
\(a,\left(x-\dfrac{x^2+y^2}{x+y}\right)\left(\dfrac{1}{y}+\dfrac{2}{x-y}\right)\)
\(b,\left(\dfrac{2}{x^2-1}+\dfrac{x^2-3}{3x^2-1}\right):\left[\dfrac{1}{x}-\dfrac{2x\left(x^2-3\right)}{\left(x^2-1\right)\left(3x^2-1\right)}\right]\)
cho P=\(\left[\dfrac{1}{x+1}-\dfrac{2\left(x+2\right)}{x^2-1}+\dfrac{x+3}{\left(x-1\right)^2}\right].\dfrac{4}{\left(x-1\right)^2\left(x^2-1\right)}\)
a.rút gọn P
b.tìm các giá trị của x để P=-3
cho P=\(\left[\dfrac{1}{x+1}-\dfrac{2\left(x+2\right)}{x^2-1}+\dfrac{x+3}{\left(x-1\right)^2}\right].\dfrac{4}{\left(x-1\right)^2\left(x^2-1\right)}\)
a.rút gọn P
b.tìm các giá trị của x để P=-3
cho P=\(\left[\dfrac{1}{x+1}-\dfrac{2\left(x+2\right)}{x^2-1}+\dfrac{x+3}{\left(x-1\right)^2}\right].\dfrac{4}{\left(x-1\right)^2\left(x^2-1\right)}\)
a.rút gọn P
b.tìm các giá trị của x để P=-3