Lời giải:
\(B=x(x^2+xy+y^2)-y(y^2+xy+y^2)\)
\(=(x-y)(x^2+xy+y^2)=x^3-y^3=10^3-(-1)^3=1000-(-1)=1001\)
\(C=x^4+10x^3+10x^2+10\)
\(=x^4+9x^3+x^3+9x^2+x^2+10\)
\(=x^3(x+9)+x^2(x+9)+x^2+10\)
\(=(x+9)(x^3+x^2)+x^2+10\)
\(=(-9+9)[(-9)^3+(-9)^2]+(-9)^2+10\)
\(=0+(-9)^2+10=91\)
Thay $x=-1$ vào biểu thức:
\(D=x^2(x+y)-xy(x-y)-x(y^2+1)\)
\(=(-1)^2(x+y)-(-1)y(x-y)-(-1)(y^2+1)\)
\(=x+y+y(x-y)+(y^2+1)\)
\(=x+y+xy-y^2+y^2+1=x+y+xy+1\)
\(=(x+1)(y+1)=(-1+1)(y+1)=0\)