\(A=3\left(2^2+1\right)\left(x^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A_1=\left(4-1\right)\left(2^2+1\right)\left(x^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A_3=\left(2^2-1\right)\left(2^2+1\right)\left(x^4+1\right)\left(x^8+2\right)\left(2^{16}+1\right)\)\(A_4=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A_5=\left(x^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(A_6=\left(x^{16}-1\right)\left(2^{16}+1\right)\)
\(A_7=2^{16}-1=A\)