Ta có:
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1).
\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}.\)
Có:
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}.\)
\(\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}.\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}.\)
\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{75}\) và \(3x-7y+5z=30.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{75}=\frac{3x-7y+5z}{63-98+75}=\frac{30}{40}=\frac{3}{4}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{21}=\frac{3}{4}\Rightarrow x=\frac{3}{4}.21=\frac{63}{4}\left(KTM\right)\\\frac{y}{14}=\frac{3}{4}\Rightarrow y=\frac{3}{4}.14=\frac{21}{2}\left(KTM\right)\\\frac{z}{15}=\frac{3}{4}\Rightarrow z=\frac{3}{4}.15=\frac{45}{4}\left(KTM\right)\end{matrix}\right.\)
Vậy không có cặp số \(\left(x;y;z\right)\) nào thỏa mãn đề bài.
Chúc bạn học tốt!