Ta có:
\(x^2+y^2+2z^2+4x-4y-6z-2xz+9=0\)
\(\Leftrightarrow\left(z^2-2z+1\right)+\left(y^2-4y+4\right)+\left(x^2+z^2+4-2xz+4x-4z\right)=0\)
\(\Leftrightarrow\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2=0\)
Vì \(\left(z-1\right)^2\ge0\) với mọi z
\(\left(y-2\right)^2\ge0\) với mọi y
\(\left(x-z+2\right)^2\ge0\) với mọi x, z
Suy ra \(\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left(z-1\right)^2=0\\\left(y-2\right)^2=0\\\left(x-z+2\right)^2=0\end{matrix}\right.\)
Hay \(\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2=0\) khi \(\left[{}\begin{matrix}\left(z-1\right)^2=0\\\left(y-2\right)^2=0\\\left(x-z+2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}z-1=0\\y-2=0\\x-z+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}z=1\\y=2\\x-z+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}z=1\\y=2\\x=-1\end{matrix}\right.\)
Vậy \(x=-1\); \(y=2\); \(z=1\)