Có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{z}{x+y-2}=\dfrac{1}{2}\)
\(\Rightarrow2x=x+y-2\)
\(\Rightarrow2z+2=x+y\) ( quy tắc chuyển vế )
Lại có:
\(x+y+z=\dfrac{1}{2}\)
\(\Leftrightarrow2z+2+z=\dfrac{1}{2}\)
\(\Leftrightarrow3z+2=\dfrac{1}{2}\)
\(\Leftrightarrow3z=\dfrac{1}{2}-2=\dfrac{-3}{2}\)
\(\Leftrightarrow z=\dfrac{-1}{2}\)
Vậy \(\left\{x,y,z\right\}=\left\{\dfrac{1}{2},\dfrac{1}{2},\dfrac{-1}{2}\right\}\)
Chúc bạn học tốt!