mình chỉ biết làm 2 câu b and c thôi bạn thông cảm nha
Tìm x,y,z
b,\(\left(x+\frac{1}{2}\right)^2=\frac{81}{64}\)
Có \(\frac{81}{64}=\left(\frac{9}{8}\right)^2hoặc\frac{81}{64}=\left(-\frac{9}{8}\right)^2\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2hoặc\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)
+TH1: \(\left(x+\frac{1}{2}\right)^2=\left(\frac{9}{8}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\frac{9}{8}\)
\(x=\frac{9}{8}-\frac{1}{2}\)
\(x=\frac{9-4}{8}\)
\(x=\frac{5}{8}\)
+TH2:\(\left(x+\frac{1}{2}\right)^2=\left(-\frac{9}{8}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=-\frac{9}{8}\)
\(x=-\frac{9}{8}-\frac{1}{2}\)
\(x=\frac{-9-4}{8}\)
\(x=\frac{-13}{8}\)
Vậy x= \(\frac{5}{8}\)hoặc x=\(\frac{-13}{8}\)
c, \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x^2-2y^2+z^2\)
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(\Leftrightarrow\)\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{25}=\frac{x^2-2y^2+z^2}{4-18+25}=\frac{44}{11}=4\)
- Do đó :
\(\frac{x^2}{4}=4\Leftrightarrow\frac{x}{2}=4\Rightarrow x=4.2=8\)
\(\frac{2y^2}{18}=4\Leftrightarrow\frac{y^2}{9}=4\Rightarrow\frac{y}{3}=4\Rightarrow y=4.3=12\)
\(\frac{z^2}{25}=4\Leftrightarrow\frac{z}{5}=4\Rightarrow z=4.5=20\)
vậy x = 8 , y= 12 ,z=20
a) \(\sqrt{3-x}\)=5
=>(\(\sqrt{3-x}\))2=52
=>3-x=25
=>x=-22
b)\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{81}{64}\)
=> \(\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{9}{8}\right)^2\)
=> \(x+\dfrac{1}{2}=\dfrac{9}{8}\)
=> \(x=\dfrac{9}{8}-\dfrac{1}{2}\)
=> \(x=\dfrac{5}{8}\)
c) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và \(x^2-2y^2+z^2=44\)
Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
=> \(\left[{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Ta có:
\(x^2-2y^2+z^2=44\)
=> \(\left(2k\right)^2-2\left(3k\right)^2+\left(5k\right)^2=44\)
=> \(4k^2-2.9k^2+25k^2=44\)
=> \(4k^2-18k^2+25k^2=44\)
=> \(\left(4-18+25\right).k^2=44\)
=> \(11.k^2=44\)
=> \(k^2=4\) => \(\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\)
*Với k = 2, ta có:
_\(x=2.2=4\)
_\(y=3.2=6\)
_\(z=5.2=10\)
*Với k = -2, ta có:
_\(x=2.\left(-2\right)=-4\)
_\(y=3.\left(-2\right)=-6\)
_\(z=5.\left(-2\right)=-10\)