Bài 2:
\(2^{91}\) và \(5^{35}\)
Ta có:
\(2^{91}=\left(2^{13}\right)^7\) \(=8192^7\)
\(5^{35}=\left(5^5\right)^7\) =\(3125^7\)
Vì 8192\(^7\) >3125\(^7\) nên \(2^{91}>5^{35}\)
Bài 3:
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{ab}{cd}\)
VT=\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
\(=\dfrac{a^2-2ab+b^2}{c^2-2cd+d^2}\)
Mới biết làm đến đó thôi à!
2)
\(2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Vì \(8192>3125\)
Nên \(8192^7>3125^7\)
Vậy \(2^{91}>2^{35}\)