Đặt :
\(\dfrac{x-1}{4}=\dfrac{y-2}{3}=\dfrac{z+3}{9}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=4k\\y-2=3k\\z+3=9k\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4k+1\\y=3k+2\\z=9k+3\end{matrix}\right.\)\(\left(1\right)\)
Thay \(\left(1\right)\) vào \(x-3y+4z=62\) ta có :
\(\left(4k+1\right)-3\left(3k+2\right)+4\left(9k+3\right)=62\)
\(\Leftrightarrow4k+1-9k-6+27k+12=62\)
\(\Leftrightarrow22k+7=62\)
\(\Leftrightarrow22k=55\)
\(\Leftrightarrow k=\dfrac{5}{2}\)
+) \(k=\dfrac{5}{2}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4.\dfrac{5}{2}+1=11\\y=3.\dfrac{5}{2}+2=\dfrac{19}{2}\\z=9.\dfrac{5}{2}-3=\dfrac{39}{2}\end{matrix}\right.\)
Vậy ...