Tìm x,y,z,t nguyên dương thỏa mãn \(5\left(x+y+z+t\right)+10=2xyzt\)
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Tìm các số nguyên dương x,y,z thỏa mãn x+2y+3z=4xy-5
Cho x, y, z dương thỏa mãn xyz = 1. Tìm GTLN:
P = \(\dfrac{1}{\left(3x+1\right)\left(y+z\right)+x}+\dfrac{1}{\left(3y+1\right)\left(z+x\right)+y}+\dfrac{1}{\left(3z+1\right)\left(x+y\right)+z}\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Cho x+2y+3z=18; x,y,z là các số dương. CMR:
\(\frac{2y+3z+5}{1+x}+\frac{3z+x+5}{1+2y}+\frac{x+2y+5}{1+3z}\ge\frac{51}{7}\)
Cho x,y,z là ba số dương thỏa mãn x+y+z = 3. CMR:
\(\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+zx}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
Cho : x,y,z là các số dương thỏa mãn \(\sqrt{x+2}-x^3=\sqrt{x+2}-y^3\)
tìm GTNN của \(x^2+2xy-y^2+2y+2020\)