pttđ:
\(x+y+13=4\sqrt{x}+6\sqrt{y}\)
\(x+y+13-4\sqrt{x}-6\sqrt{y}=0\)
\(x+y+4+9-4\sqrt{x}-6\sqrt{y}=0\)
\(\left(\sqrt{x}-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
=> \(\sqrt{x}-2=0\) ; \(\sqrt{y}-3=0\)
=> x = 2^2 = 4
y = 3^2 = 9
pttđ:
\(x+y+13=4\sqrt{x}+6\sqrt{y}\)
\(x+y+13-4\sqrt{x}-6\sqrt{y}=0\)
\(x+y+4+9-4\sqrt{x}-6\sqrt{y}=0\)
\(\left(\sqrt{x}-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
=> \(\sqrt{x}-2=0\) ; \(\sqrt{y}-3=0\)
=> x = 2^2 = 4
y = 3^2 = 9
Bài 1 : Tìm x,y,z
a) \(\sqrt{\frac{5x+7}{x+3}}\)=4
b) x+y+13=\(4\sqrt{x}\)+6√y-1
c) \(3\sqrt{2}\)=√x-√2x-1
d) √x^2+6x+9 =3
Mn giúp mình với ạ
Biết các số thực x,y thỏa mãn : x2+y2=1
Hãy CM: \(-\sqrt{2}\le x+y\le\sqrt{2}\)
đơn giản biểu thức
a \(\dfrac{3-2\sqrt{2}}{1-\sqrt{2}}\)
b \(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-y}\) (x,y >0)
c \(\dfrac{5\sqrt{16}-\sqrt{15}}{6-2\sqrt{6}}\)
d \(\dfrac{x\sqrt{x}-y\sqrt{y}}{x-y}\) ( x,y>0)
cho 3 số thực x,y,z>0 thoả mãn \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=1\).Tìm giá trị nhỏ nhất của biểu thức :P=\(\dfrac{y^2z^2}{x\left(y^2+z^2\right)}+\dfrac{z^2x^2}{y\left(z^2+x^2\right)}+\dfrac{x^2y^2}{z\left(x^2+y^2\right)}\)
tìm gtnn D=x^4 + 4x^2+y^2+2012 biết x^2+y>=1
Cho x,y \(\in\)Z thõa mãn \(\dfrac{x^2-1}{2}=\dfrac{y^2-1}{3}\). Chứng minh \(x^2-y^2⋮40\)
bài 1: rút gọn các biểu thức.
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-(\sqrt{x}-\sqrt{y})^2\)
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}(x\ge0)\)
c) \(\dfrac{x-1}{\sqrt{y}-1}\sqrt{\dfrac{(y-2\sqrt{y}+1)^2}{(x-1)^4}}(x\ne1,y\ne1,y>0)\)
bài 2:rút gọn và tính.
a) \(\sqrt{\dfrac{\sqrt{a}-1}{\sqrt{b}+1}:}\sqrt{\dfrac{\sqrt{b}-1}{\sqrt{a}+1}với}a=7,25;b=3,25\)
b) \(\sqrt{15a^2-8a\sqrt{15}+16}vớia=\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}\)
c) \(\sqrt{10a^2-4a\sqrt{10}+4}vớia=\sqrt{\dfrac{2}{5}}+\sqrt{\dfrac{5}{2}}\)
d) \(\sqrt{a^2+2\sqrt{a^2-1}}-\sqrt{a^2-2\sqrt{a^2-1}}(a=\sqrt{5})\)
bài 3: rút gọn các biểu thức.
a) \(\sqrt{9(x-5)^2}(x\ge5)\)
b) \(\sqrt{x^2.(x-2)^2}(x< 0)\)
c)\(\dfrac{\sqrt{108x^3}}{\sqrt{12x}}(x>0)\)
d)\(\dfrac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}(x< 0:y\ne0)\)
ai giúp mik vs ạ, cảm ơn !
Cho x,y,z#0, và x+y+z=xyz và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)
Tính giá trị biểu thức: \(P=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)
Rút gọn biểu thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\);
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) (\(x\ge0\))
c)\(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\) (\(x\ne1\), \(y\ne1\), \(y>0\)).
giải phương trình:\(\left\{{}\begin{matrix}x^2+y^2+2x+2y=\left(x+2\right)\left(y+2\right)\\\left(\frac{x}{y+2}\right)^2+\left(\frac{y}{x+2}\right)^2=1\end{matrix}\right.\)