Ta có: \(A=\dfrac{x+3}{x-1}=\dfrac{x-1+4}{x-1}=1+\dfrac{4}{x-1}\)
Để A có giá trị nguyên thì \(x-1\inƯ\left(4\right)\)
ta có:\(Ư\left(4\right)=\left\{\pm1,\pm2,\pm4\right\}\)
Ta có bảng sau:
x-1 | -1 | 1 | -2 | 2 | -4 | 4 |
x | 0 | 2 | -1 | 3 | -3 | 5 |
Vậy \(x\in\left\{-3,-1,0,2,3,5\right\}\)
=.= hok tốt!!
A=\(\dfrac{x+3}{x-1}=\dfrac{\left(x-1\right)+4}{x-1}=1+\dfrac{4}{x-1}\)
⇒ Để A có giá trị nguyên ⇒ \(x-1\)∈ \(Ư\left(4\right)\)
⇒ \(x-1\)∈ \(\left\{-4;-2;-1;1;2;4\right\}\)
TH1 \(x-1\)= -4
x = -3
TH2 \(x-1\)= -2
x = -1
TH3 \(x-1\)= -1
x = 0
TH4 \(x-1\)= 1
x = 2
TH5 \(x-1\)= 2
x = 3
TH6 \(x-1\)= 4
x = 5
Vậy x ∈ \(\left\{-3;-1;0;2;3;5\right\}\)
\(A=\dfrac{x+3}{x-1}=\dfrac{\left(x-1\right)+4}{x-1}=\dfrac{x-1}{x-1}+\dfrac{4}{x-1}=1+\dfrac{4}{x-1}\) (giải chi tiết cho bn dễ hiểu)
Để A có gt nguyên \(\Leftrightarrow x=\left(x-1\right)\inƯ\left(4\right)\)
\(\Rightarrow\left(x-1\right)\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x\in\left\{-3;-2;-1;0;2;3;5\right\}\)