\(\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2-\dfrac{1}{25}=0\\ \Leftrightarrow\left(\dfrac{x}{10}-\dfrac{3}{2}+\dfrac{1}{5}\right)\left(\dfrac{x}{10}-\dfrac{3}{2}-\dfrac{1}{5}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{10}-\dfrac{13}{10}=0\\\dfrac{x}{10}-\dfrac{17}{10}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=13\\x=17\end{matrix}\right.\)
\(\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2-\dfrac{1}{25}=0\)
\(\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2=\dfrac{1}{25}\)
\(\dfrac{x}{10}-\dfrac{3}{2}=\pm\dfrac{1}{5}\)
\(\left[{}\begin{matrix}\dfrac{x}{10}-\dfrac{3}{2}=\dfrac{1}{5}\\\dfrac{x}{10}-\dfrac{3}{2}=-\dfrac{1}{5}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x-15=2\\x-15=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2+15\\x=-2+15\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=17\\x=13\end{matrix}\right.\)
Vậy \(x_1=17;x_2=13\)
Ta có: \(\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2-\dfrac{1}{25}=0\\ =>\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2=0+\dfrac{1}{25}=\dfrac{1}{25}\\ Mà:\left\{{}\begin{matrix}\left(\dfrac{1}{5}\right)^2=\dfrac{1}{25}\\\left(-\dfrac{1}{5}\right)^2=\dfrac{1}{25}\end{matrix}\right.< =>\left\{{}\begin{matrix}\dfrac{x}{10}-\dfrac{3}{2}=\dfrac{1}{5}\\\dfrac{x}{10}-\dfrac{3}{2}=-\dfrac{1}{5}\end{matrix}\right.\\ =>\left\{{}\begin{matrix}\dfrac{x}{10}=\dfrac{1}{5}+\dfrac{3}{2}=\dfrac{17}{10}\\\dfrac{x}{10}=\dfrac{13}{10}\end{matrix}\right.\\ =>\left\{{}\begin{matrix}x=\dfrac{17.10}{10}=17\\x=\dfrac{13.10}{10}=13\end{matrix}\right.=>\left\{{}\begin{matrix}x=17\\x=13\end{matrix}\right.\)
Vậy: \(x\in\left\{13;17\right\}\)
\(\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2=\dfrac{1}{25}=\left(-\dfrac{1}{5}\right)^2=\left(\dfrac{1}{5}\right)^2\)
TH1 : \(\dfrac{x}{10}-\dfrac{3}{2}=\dfrac{1}{5}\)
=> \(\dfrac{x}{10}=\dfrac{1}{5}+\dfrac{3}{2}=\dfrac{17}{10}\)
=> x = 17
TH2 : \(\dfrac{x}{10}-\dfrac{3}{2}=-\dfrac{1}{5}\)
=> \(\dfrac{x}{10}=-\dfrac{1}{5}+\dfrac{3}{2}=\dfrac{13}{10}\)
Vậy x = 17 hoặc 13
\(\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2-\dfrac{1}{25}=0\)
\(\Rightarrow\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2=0+\dfrac{1}{25}=\dfrac{1}{25}\)
\(\Rightarrow\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2=\left(\dfrac{1}{5}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}\left(\dfrac{1}{5}\right)^2=\dfrac{1}{25}\\\left(-\dfrac{1}{5}\right)^2=\dfrac{1}{25}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\dfrac{x}{10}-\dfrac{3}{2}=\dfrac{1}{5}\\\dfrac{x}{10}-\dfrac{3}{2}=-\dfrac{1}{5}\end{matrix}\right.\Rightarrow}\left[{}\begin{matrix}\dfrac{x}{10}=\dfrac{1}{5}+\dfrac{3}{2}=\dfrac{17}{10}\\\dfrac{x}{10}=-\dfrac{1}{5}+\dfrac{3}{2}=\dfrac{13}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{17\cdot10}{10}=17\\x=\dfrac{13\cdot10}{10}=13\end{matrix}\right.\)
Vậy \(x\in\left\{13;17\right\}\).
\(\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2-\dfrac{1}{25}=0\)
<=> \(\left(\dfrac{x}{10}-\dfrac{3}{2}\right)^2-\left(\dfrac{1}{5}\right)^2=0\)
<=> \(\left(\dfrac{x}{10}-\dfrac{3}{2}+\dfrac{1}{5}\right)\left(\dfrac{x}{10}-\dfrac{3}{2}-\dfrac{1}{5}\right)=0\)
<=> \(\left(\dfrac{x}{10}-\dfrac{13}{10}\right)\left(\dfrac{x}{10}-\dfrac{17}{10}\right)=0\)
<=> \(\left(\dfrac{x-13}{10}\right)\left(\dfrac{x-17}{10}\right)=0\)
Vậy \(\dfrac{x-13}{10}=0\) hoặc \(\dfrac{x-17}{10}=0\)
1) \(\dfrac{x-13}{10}=0\)
<=> x - 13 =0
<=> x = 13
2) \(\dfrac{x-17}{10}=0\)
<=> x - 17 =0
<=> x = 17
Vậy x= 13 hoặc x =17
ủa , bộ ... đâu mà k tick ... zậy \(\Sigma\)(=\(\Delta\)=)