Bài 3: Những hằng đẳng thức đáng nhớ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Linh Chi

Tìm x

f)\(4x^2-12x+9=0\)

g)\(3x^2+7x+2=0\)

h)\(x^2-4x+1=0\)

i)\(2x^2-6x+1=0\)

j)\(3x^2+4x-4=0\)

Mỹ Duyên
9 tháng 6 2017 lúc 21:12

f) \(4x^2-12x+9=0\)

<=> \(\left(2x-3\right)^2\) = 0

<=> \(2x-3=0\)

<=> \(2x=3\) <=> \(x=\dfrac{3}{2}\)

Vậy ...............

g) \(3x^2+7x+2=0\)

<=> \(\left(3x^2+6x\right)+\left(x+2\right)=0\)

<=> \(3x\left(x+2\right)+\left(x+2\right)=0\)

<=> \(\left(x+2\right)\left(3x+1\right)=0\)

<=> \(\left[{}\begin{matrix}x=-2\\x=\dfrac{-1}{3}\end{matrix}\right.\)

Vậy ........................

h) \(x^2-4x+1=0\)

<=> \(\left(x^2-4x+4\right)-3=0\)

<=> \(\left(x-2\right)^2=3\)

<=> \(\left[{}\begin{matrix}x+2=\sqrt{3}\\x+2=-\sqrt{3}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3}-2\\x=-\sqrt{3}-2\end{matrix}\right.\)

Vậy .........................

i) \(2x^2-6x+1=0\)

<=> \(2\left(x^2-3x+2,25\right)-3,5=0\)

<=> \(\left(x-1,5\right)^2=1,75\)

<=> \(\left[{}\begin{matrix}x-1,5=\sqrt{1,75}\\x-1,5=-\sqrt{1,75}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{1,75}+1,5\\x=-\sqrt{1,75}+1,5\end{matrix}\right.\)

Vậy ...................

j) \(3x^2+4x-4=0\)

<=> \(\left(3x^2+6x\right)-\left(2x+4\right)=0\)

<=> \(3x\left(x+2\right)-2\left(x+2\right)\) = 0

<=> \(\left(x+2\right)\left(3x-2\right)=0\)

<=> \(\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy ....................................

Rain Tờ Rym Te
9 tháng 6 2017 lúc 21:25

f) \(4x^2-12x+9=0\)

\(\Rightarrow\left(2x-3\right)^2=0\)

\(\Rightarrow2x-3=0\)

\(\Rightarrow x=\dfrac{3}{2}\)

Vậy..

g) \(3x^2+7x+2=0\)

\(\Rightarrow3x^2+6x+x+2=0\)

\(\Rightarrow3x\left(x+2\right)+\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(3x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1}{3}\end{matrix}\right.\)

Vậy..

h) \(x^2-4x+1=0\)

\(\Rightarrow x^2-4x+4-3=0\)

\(\Rightarrow\left(x-2\right)^2-3=0\)

\(\Rightarrow\left(x-2-\sqrt{3}\right)\left(x-2+\sqrt{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2-\sqrt{3}=0\\x-2+\sqrt{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)

Vậy..

j) \(3x^2+4x-4=0\)

\(\Rightarrow3x^2+6x-2x-4=0\)

\(\Rightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Rightarrow\left(x+2\right)\left(3x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy..

Mai Thành Đạt
9 tháng 6 2017 lúc 21:26

f

cách 1

\(4x^2-12x+9=0\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)

cách 2

\(\Delta=\left(-12\right)^2-4.4.9=0\) nên phương trình có nghiệm kép

\(x_1=x_2=-\dfrac{-12}{2.4}=\dfrac{3}{2}\)

các câu khác làm tương tự

Mỹ Duyên
9 tháng 6 2017 lúc 21:35

Sửa lại câu h

h) \(x^2-4x+1=0\)

<=> \(\left(x^2-4x+4\right)-3=0\)

<=> \(\left(x-2\right)^2=3\)

<=> \(\left[{}\begin{matrix}x-2=\sqrt{3}\\x+2=-\sqrt{3}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3}+2\\x=2-\sqrt{3}\end{matrix}\right.\)

Vậy nghiệm của PT là S = \(\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

Sáng
10 tháng 6 2017 lúc 8:51

f, \(4x^2-12x+9=0\)

\(\Rightarrow\left(2x-3\right)^2=0\)

\(\Rightarrow2x-3=0\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\dfrac{3}{2}\)

g, \(3x^2+7x+2=0\)

\(\Rightarrow x=\dfrac{-7\pm\sqrt{7^2-4.3.2}}{2.3}=\dfrac{-7\pm49-24}{6}=\dfrac{-7\pm\sqrt{25}}{6}=\dfrac{-7\pm5}{6}\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7+5}{6}\\x=\dfrac{-7-5}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=-2\end{matrix}\right.\)

\(\Rightarrow x_1=\dfrac{-1}{3};x_2=-2\)

h, \(x^2-4x+1=0\)

\(\Rightarrow\dfrac{4\pm\sqrt{\left(-4\right)^2-4.1.1}}{2.1}=\dfrac{4\pm\sqrt{16-4}}{2}=\dfrac{4\pm\sqrt{12}}{2}=\dfrac{4\pm2\sqrt{3}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4+2\sqrt{3}}{2}\\x=\dfrac{4-2\sqrt{3}}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{3}\\x=2-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow x_1=2+\sqrt{3};x_2=2-\sqrt{3}\)

i, \(2x^2-6x+1=0\)

\(\Rightarrow x=\dfrac{6\pm\sqrt{\left(-6\right)^2-4.2.1}}{2.2}=\dfrac{6\pm\sqrt{36-8}}{4}=\dfrac{6\pm\sqrt{28}}{4}=\dfrac{6\pm2\sqrt{7}}{4}\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6+2\sqrt{7}}{4}\\x=\dfrac{6-2\sqrt{7}}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{7}}{2}\\x=\dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\)

\(\Rightarrow x_1=\dfrac{3+\sqrt{7}}{2};x_2=\dfrac{3-\sqrt{7}}{2}\)

j, \(3x^2+4x-4=0\)

\(\Rightarrow x=\dfrac{-4\pm\sqrt{4^2-4.3.\left(-4\right)}}{2.3}=\dfrac{-4\pm\sqrt{16+68}}{6}=\dfrac{-4\pm\sqrt{64}}{6}=\dfrac{-4\pm8}{6}\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-4+8}{6}\\x=\dfrac{-4-8}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

\(\Rightarrow x_1=\dfrac{2}{3};x_2=-2\)


Các câu hỏi tương tự
trường trần
Xem chi tiết
trường trần
Xem chi tiết
Ngô Anh Huyền Trân
Xem chi tiết
reyna phạm
Xem chi tiết
Hoa Phan
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Bí Mật
Xem chi tiết
Tạ Thu Hương
Xem chi tiết
Đỗ Linh Chi
Xem chi tiết