a/\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x+3\right)\left(x-3\right)=26\)
↔ \(x^3+2^3\)\(-x\left(x^2-3^2\right)\)= 26
↔\(x^3+8-x^3+9x=26\)
↔\(9x=18\leftrightarrow x=2\)
Vậy x=2
b/\(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-4\right)\left(x+4\right)=21\)
\(\Leftrightarrow x^3-3^3-x\left(x^2-4^2\right)=21\)
\(\Leftrightarrow x^3-9-x^3+16x=21\)
\(\Leftrightarrow16x=30\)
\(\Leftrightarrow x=\frac{15}{8}\)
Vậy \(x=\frac{15}{8}\)
c/\(\left(2x-1\right)\left(4x^2+2x+1\right)-4x\left(2x^2-3\right)=23\)
↔\(\left(2x\right)^3-1^3-4x\left(2x^2-3\right)=23\)
↔\(8x^3-1-8x^3+12x=23\)
↔\(12x=24\leftrightarrow x=2\)
Vậy x=2
a, (x + 2)(x2 - 2x + 4 ) - x(x + 3)(x - 3) = 26
<=> x3 + 8 - x(x2 - 9) = 26
<=> x3 + 8 - x3 + 9x = 26
<=> 9x - 18 = 0
<=> 9x = 18
<=> x = 2
b, (x - 3)(x2 + 3x + 9) - x(x - 4)(x + 4) = 21
<=> x3 - 27 - x(x2 - 16) = 21
<=> x3 - 27 - x3 + 16x = 21
<=> 16x - 48 = 0
<=> 16x = 48
<=> x = 3
c, (2x - 1)(4x2 + 2x + 1) - 4x(2x2 - 3) = 23
<=> 8x3 - 1 - 8x3 + 12x = 23
<=> 12x - 24 = 0
<=> 12x = 24
<=> x = 2
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x+3\right)\left(x-3\right)=26\)
\(< =>x^3-2x^2+4x+2x^2-4x+8-x\left(x^2-9\right)-26=0\)
\(< =>x^3+8-x^3+9x-26=0\)
\(< =>9x-18=0< =>x=2\)
\(\left(x-3\right)\left(x^2+3x+9\right)-x\left(x-4\right)\left(x+4\right)=21\)
\(< =>x^3+3x^2+9x-3x^2-9x-27-x\left(x^2-16\right)-21=0\)
\(< =>x^3-27-x^3+16x-21=0\)
\(< =>16x-48=0< =>x=3\)
\(\left(2x-1\right)\left(4x^2+2x+1\right)-4x\left(2x^2-3\right)=23\)
\(< =>8x^3+4x^2+2x-4x^2-2x-1-8x^3+12x-23=0\)
\(< =>12x-24=0< =>x=2\)