|5x-3|≥7
TH1: 5x-3\(\ge7\)
<->x \(\ge2\)
TH2:5x-3\(\ge-7\)
<-> x\(\ge\frac{-4}{5}\)
Ta có: \(\left|5x-3\right|\ge7\)
\(\Rightarrow\left[{}\begin{matrix}5x-3\ge7\\5x-3\le-7\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}5x\ge10\\5x\le-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-0,8\end{matrix}\right.\)
Vì x∈Z nên \(x\ge2\)
Vậy: \(x\ge2\)
\(\left|5x-3\right|\ge7\)
\(\Rightarrow\left[{}\begin{matrix}5x-3\ge7\\5x-3\le-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x\ge10\\5x\le-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ge10:5\\x\le\left(-4\right):5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-\frac{4}{5}\end{matrix}\right.\)
Vậy \(x\ge2\) hoặc \(x\le-\frac{4}{5}\) thì \(\left|5x-3\right|\ge7.\)
Chúc bạn học tốt!