Ta có: \(2x^2=x\)
\(\Rightarrow2.x.x=x\)
\(\Rightarrow\left(2.x\right).x=x.1\)
\(\Rightarrow2.x=1\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\) .
2x2=x
<=> 2x2-x=0
<=> x(2x-1)=0
<=> ĐKXĐ: x=0, 2x-1=0
<=> x=0, \(\dfrac{1}{2}\)
2x2 = x
=> 2x2 - x = 0
=> x(2x-1) = 0
=> \(\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy x \(\in\) {0 ; \(\dfrac{1}{2}\) }