2(x+5)-x2-5x=0
<=> 2(x+5)-(x2+5x)=0
<=> 2(x+5)-x(x+5)=0
<=> (x+5)(2-x)=0
<=> \(\left\{{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy ...
x2+3x+2=0
<=> x2+x+2x+2=0
<=> (x2+x)+(2x+2)=0
<=> x(x+1)+2(x+1)=0
<=> (x+1)(x+2)=0
<=> \(\left\{{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy ....
x2-4x-5=0
<=> x2-x+5x-5=0
<=>(x2-x)+(5x-5)=0
<=> x(x-1)+5(x-1)=0
<=> (x-1)(x+5)=0
<=> \(\left\{{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
Vậy .....
1) 2. (x + 5) - x2 - 5x = 0
⇒ 2. (x + 5) - x. ( x - 5 ) = 0 ⇒ ( x - 5 ).(2 - x ) = 0
⇒ \(\left[{}\begin{matrix}x-5=0\\2-x=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy x = 5 ; x= 2
2) x2 + 3x + 2 = 0 ⇒ x2 + x + 2x + 2 = 0
⇒ ( x2 + x ) + ( 2x + 2 ) = 0
⇒ x. ( x + 1 ) + 2. ( x + 1 ) = 0
⇒ ( x +1 ).(x + 2 ) = 0 ⇒ \(\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
Vậy x = -1; x = -2
3) x2 - 4x -5 = 0 ⇒ x2 + x - 5x - 5 = 0
⇒ ( x2 + x ) - ( 5x + 5 ) = 0
⇒ x. ( x + 1 ) - 5. ( x + 1 ) = 0
⇒ ( x + 1 ).( x - 5 ) = 0
⇒ \(\left[{}\begin{matrix}x+1=0\\x-5=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=-1\\x=5\end{matrix}\right.\)
Vậy x = -1 ; x = 5
4) - 2x2 - 3x + 5 = 0 ⇒ -2x2 + 2x - 5x + 5 = 0
⇒ -2x. ( x - 1 ) - 5. ( x - 1 ) = 0
⇒ ( x - 1 ). ( -2x - 5 ) = 0
⇒ \(\left[{}\begin{matrix}x-1=0\\-2x-5=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=1\\-2x=5\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy x = 1 ; x = -\(\dfrac{5}{2}\)
2) 2(x+5) - x2 - 5x =0
<=> 2(x+5) -x(x+5)=0
<=> (x+5)(2-x)=0
<=>\(\left[{}\begin{matrix}x-5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
vậy ...
3)x2 +3x+2=0
<=> x2 + 2x +x +2=0
<=> x(x+2) + (x+2)=0
<=>(x+1)(x+2)=0
<=>\(\left[{}\begin{matrix}x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
vậy...
4) x2 - 4x - 5x=0
<=> x2 -5x+x - 5=0
<=> x(x-5) + (x-5)=0
<=> (x-5)(x+1)=0
<=>\(\left[{}\begin{matrix}x-5=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
vậy...
5) -2x2 -3x + 5=0
<=> -2x2 +2x-5x+5=0
<=>-2x(x-1) - 5(x-1)=0
<=> (x-1)(-2x-5)=0
<=>\(\left[{}\begin{matrix}x-1=0\\-2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\-2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{2}\end{matrix}\right.\)
vậy...