Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Thu Huyền

rút gọn biểu thức: (27^10-5.81^4.3^12+4.9^8.3^8):41.3^24

giải phương trình: 4x^2-9-(2x+3)(2x-1)=0

x^3+x^2-4x=4

x^2(x^2+4)-x^2-4=0

(3x-3)^2=(x+5)^2

(2x-3)^2==(x+5)^2

x^2(x-1)-(4x^2+8x-4)=0

Huyền Tống Khánh
29 tháng 11 2017 lúc 22:45

Giải phương trình:

\(4x^2-9-\left(2x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(2x+3\right)-\left(2x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x+3\right)\left(2x-3-2x+1\right)=0\)

\(\Leftrightarrow\left(2x-3\right).\left(-2\right)=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow x=\dfrac{-3}{2}\)

Vậy nghiệm của phương trình là \(x=\dfrac{-3}{2}\) .

\(x^3+x^2-4x=4\)

\(\Leftrightarrow x^3+x^2-4x-4=0\)

\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)

Vậy tập nghiện của phương trình là S= { -2; -1; 2}.

\(x^2\left(x^2+4\right)-x^2-4=0\)

\(\Leftrightarrow x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow x^2-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là S= {-1; 1}.

\(\left(3x-3\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(3x-3\right)^2-\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(3x-3-x-5\right)\left(3x-3+x+5\right)=0\)

\(\Leftrightarrow\left(2x-8\right)\left(4x+2\right)=0\)

\(\Leftrightarrow2\left(x-4\right).2\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là S\(=\left\{\dfrac{-1}{2};4\right\}\) .

\(\left(2x-3\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(2x-3\right)^2-\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)

\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=\dfrac{-2}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là S\(=\left\{\dfrac{-2}{3};8\right\}\) .

\(x^2\left(x-1\right)-\left(4x^2+8x-4\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2+2x-1\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy nghiệm của phương trình là x=1.

Song Thư
30 tháng 11 2017 lúc 8:25

(\(27^{10}-5.81^4.3^{12}+4.9^8.3^8\)):\(\left(41.3^{24}\right)\)

\(=\left[\left(3^3\right)^{10}-5.\left(3^4\right)^4.3^{12}+4.\left(3^2\right)^8.3^8\right]:\left(41.3^{24}\right)\)

\(=\left(3^{30}-5.3^{28}+4.3^{24}\right):\left(41.3^{24}\right)\)

\(=\left[3^{24}\left(3^6-5.3^4+4\right)\right]:\left(41.3^{24}\right)\)

\(=\left(3^{24}.328\right):\left(41.3^{24}\right)\)

\(=328:41=8\)


Các câu hỏi tương tự
Trường Beenlee
Xem chi tiết
Dung pham tuan dung
Xem chi tiết
Maria Ozawa
Xem chi tiết
Erza Scarlet
Xem chi tiết
nguyễn hải đăng
Xem chi tiết
Thế Duy
Xem chi tiết
Nguyễn Chi
Xem chi tiết
Nguyễn Thành Nam
Xem chi tiết
Hoàng Diệu Anh
Xem chi tiết