a)\(\left(2x+5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+20x+25=x^2+4x+4\)
\(\Leftrightarrow4x^2-x^2+20x-4x=4-25\)
\(\Leftrightarrow3x^2+16x=-21\)
\(\Leftrightarrow3x^2+16x+21=0\)
\(\Leftrightarrow3x^2+9x+7x+21=0\)
\(\Leftrightarrow3x\left(x+3\right)+7\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{-7}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{-3;\dfrac{-7}{3}\right\}\)
e)\(\left(x-2\right)\left(2x-3\right)=\left(4-2x\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)-\left(4-2x\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-3-4+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{4}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S=\(\left\{2;\dfrac{7}{4}\right\}\)
g)\(4x^2-1=\left(2x+1\right)\left(3x-5\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-\left(2x+1\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1-3x+5\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\4\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{4;\dfrac{-1}{2}\right\}\)