f) |-2x| = 3x+4
⇒\(\left[{}\begin{matrix}-2x=3x+4\\-2x=-3x-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{-4}{5}\\x=-4\end{matrix}\right.\)
g) |2x-1| = 6-x
⇒\(\left[{}\begin{matrix}2x-1=6-x\\2x-1=x-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{3}\\x=-5\end{matrix}\right.\)
h) |-1+5x| = 8-x
⇒\(\left[{}\begin{matrix}-1+5x=8-x\\-1+5x=x-8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-7}{4}\end{matrix}\right.\)
i) |-2x+1| = x+3
⇒\(\left[{}\begin{matrix}-2x+1=x+3\\-2x+1=-x-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=4\end{matrix}\right.\)
k) |-2-5x| = -4x+7
⇒\(\left[{}\begin{matrix}-2-5x=-4x+7\\-2-5x=4x-7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-9\\x=\frac{5}{9}\end{matrix}\right.\)
a) |x-2| = 3
⇒\(\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
b) |x+1| = |2x+3|
⇒\(\left[{}\begin{matrix}x+1=2x+3\\x+1=-2x-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=\frac{-4}{3}\end{matrix}\right.\)
c) |3x| = x+6
⇒\(\left[{}\begin{matrix}3x=x+6\\3x=-x-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\frac{-3}{2}\end{matrix}\right.\)
d) |x-5| = 13-2x
⇒\(\left[{}\begin{matrix}x-5=13-2x\\x-5=2x-13\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=8\end{matrix}\right.\)
e) |5x-1| = x-12
⇒\(\left[{}\begin{matrix}5x-1=x-12\\5x-1=12-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{-11}{4}\\x=\frac{13}{6}\end{matrix}\right.\)