Đặt t=cotx, t>0
Ta có: y=\(\frac{t+1}{10t+m}\)
\(\Rightarrow y'=\frac{m-10}{\left(10t+m\right)^2}\)
Để hàm số đồng biến trên \(\left(0;\frac{\pi}{2}\right)\)mà hàm số t lại nghịch biến trên \(\left(0;\frac{\pi}{2}\right)\)thì m-10<0
\(\Leftrightarrow m< 10\)
Lại có điều kiện để hàm số xác định: 10t+m\(\ne0\) \(\Leftrightarrow10t\ne-m\)\(\Leftrightarrow-10t\ne m\)
Mà t>0 \(\Rightarrow-10t< 0\:\Rightarrow m\ge0\)
Vậy \(0\le m< 10\) thì hàm số đồng biến trên \(\left(0;\frac{\pi}{2}\right)\)
Không hiểu thì bạn hỏi lại mình nha ><
Đặt \(cotx=t\) \(\Rightarrow t>0\)
Ta thấy rằng khi x tăng trên \(\left(0;\frac{\pi}{2}\right)\) thì t giảm trên \(\left(0;+\infty\right)\)
Do đó hàm \(y=\frac{cotx+1}{10cotx+m}\) tăng trên \(\left(0;\frac{\pi}{2}\right)\Leftrightarrow y=\frac{t+1}{10t+m}\) giảm trên \(\left(0;+\infty\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}y'=\frac{m-10}{\left(10t+m\right)^2}< 0\\-\frac{m}{10}\notin\left(0;+\infty\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 10\\-\frac{m}{10}\le0\end{matrix}\right.\) \(\Leftrightarrow0\le m< 10\)