\(D=4x^4+4x^2y^2+y^4-4x^2y^2=\left(2x^2+y^2\right)^2-4x^2y^2=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)Để D ng/tố thì \(\left[{}\begin{matrix}2x^2+y^2-2xy=1\\2x^2+y^2+2xy=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+\left(x+y\right)^2=1\\x^2+\left(x-y\right)^2=1\end{matrix}\right.\) Vì x nguyên dương nên x=0 hoặc x=1. Từ đó có y=1