Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n\)
\(\Leftrightarrow2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(\Leftrightarrow2A-A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}-\left(2.2^2+3.2^3+4.2^4+...+n.2^n\right)\)
\(\Leftrightarrow A=-2.2^2-2^3-2^4-....-2^n+n.2^{n+1}\)
\(\Leftrightarrow A=-2^{n+1}+n.2^{n+1}=\left(n-1\right).2^{n+1}\)
mà \(A=2^{n+11}\) \(\Leftrightarrow\left(n-1\right).2^{n+1}=2^{n+11}\)
\(\Leftrightarrow\left(n-1\right).2^n.2=2^n.2^{11}\)
\(\Leftrightarrow\left(n-1\right)=2^{10}\)
\(\Leftrightarrow n=2^{10}+1\)